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Abstract: The Global Climate Model (GCM) run at a coarse spatial resolution cannot be directly

used for climate impact studies. Downscaling is required to extract the sub-grid and local scale

information. This paper investigates if the artificial neural network (ANN) is better than the

widely-used regression-based statistical downscaling model (SDSM) for downscaling climate for

a site in Colombo, Sri Lanka. Based on seasonal and annual model biases and the root mean

squared error (RMSE), the ANN performed better than the SDSM for precipitation. This paper

proposes a novel methodology for improving climate predictions by combining SDSM with neural

networks. This method will allow a user to apply SDSM with a neural network model for higher

skills in downscaling. The study uses the Canadian Earth System Model (CanESM2) of the IPCC

Fifth Assessment Report, reanalysis from the National Center for Environmental Prediction (NCEP),

and the Asian Precipitation Highly Resolved Observational Data Integration towards Evaluation of

Water Resources (APHRODITE) project data as the observation. SDSM and the focused time-delayed

neural network (TDNN) models are used for the downscaling. The projected annual increase for

Representative Concentration Pathway (RCP) is 8.5; the average temperature is 2.83 ◦C (SDSM) and

3.03 ◦C (TDNN), and rainfall is 33% (SDSM) and 63% (TDNN) for 2080’s.

Keywords: downscaling; climate change; SDSM; neural networks; GCM; Sri Lanka

1. Introduction

The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC)

concluded that the warming in the climate is ‘unequivocal.’ IPCC AR5 projects an increase of

global mean surface temperature for 2081–2100 to 0.3–1.7 ◦C (RCP2.6) and 2.6–4.8 ◦C (RCP8.5) [1].

The year 2016 was the third consecutive hottest year on record according to the National Oceanic and

Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA).

Globally averaged temperatures in 2016 were 0.99 ◦C warmer than the mid-20th-century average [2].

The Paris Summit participants (Conference of Parties, COP21), in 2015, agreed to limit the rise in global

temperature below 2 ◦C above the pre-industrial level till 2100. The global average temperature is

already halfway to the target by 2016. Climate change is projected to increase the temperature and

intensify the global water cycle, increasing both extreme events and non-rainy days, causing multiple

stresses of floods and droughts. It is difficult to predict the future climate due to uncertainties from

climate models and various other sources. Prediction of future climate research is important for impact

studies and adaptation.
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The Global Climate Model (GCM) are the models used for climate predictions and used to study

climate variability and change. GCM are numerical coupled models that can simulate global climate

features at the continental scale, such as atmospheric circulation cells, intertropical convergence zones,

jet streams, and also simulate reasonably well the oceanic circulation like the conveyor belt and

thermohaline circulation [3]. The model calculates the interactions based on the predefined physical

laws within and across different grids (based on resolution) to represent the climate behavior in

time. Higher resolution climate models enable potentially better representation of local features.

The outputs from the GCM are at a coarse spatial resolution, typically 100’s of km, while the

resolution required for impact assessments are like the temperature and rainfall for a point location or

a catchment. Downscaling is needed to bridge this difference and obtain the sub-grid scale information.

Broadly downscaling can be divided into two main types, dynamic and statistical downscaling.

In dynamic downscaling, a regional climate model (RCM) is nested within the GCM and run with

boundary conditions from the GCM. Statistical methods relate the large-scale predictors with the

local climate variables through some transfer function. Comprehensive comparisons of dynamic

and statistical methods are available in [4–6]. Studies have shown the performance of statistical

downscaling to be competitive compared to dynamical methods for climate change studies [6].

A significant advantage of the statistical methods is that they are computationally inexpensive.

The neural network (NN) has found a wide range of applications in climate science. The algorithms

are inspired by the neuron structure and the way the human brain process information and learns

from the past. There are many types of neural networks used to solve classification, regression and

clustering problems. NN has been utilized for diverse applications like precipitation prediction [7–9],

water resources studies [10], meteorology and oceanography [11], weather forecasting [12,13],

climate variability [7,9] and other climate-related studies. Neural networks have been found useful

to extract the non-linear relationships in climate variables [14–17]. NN has good nonlinear mapping,

noise tolerance and predictive knowledge [9], believed to be more powerful than regression-based

methods [16], and does not require a priori knowledge of the catchment [18]. Temporal Neural

networks have been shown to be better than regression-based downscaling in climate variability and

extremes [7]. NN can potentially be used to identify hidden relationships with the extraction of the

time information.

The objective of this paper is to investigate if neural networks are better than SDSM for

determining the relationships between GCM predictors and the local climate variables of temperature

and rainfall. The paper will identify the optimal neural network that can be trained easily and applied

for the given data and study site. The paper will propose a combined downscaling methodology

of SDSM with the regression outputs from a neural network, allowing a user to apply SDSM for

weather generator and other downscaling analysis. The following are used interchangeably: artificial

neural network (ANN) and neural network (NN); precipitation and rainfall. The paper is organized as

follows: Section 2 provides the overview on downscaling, study site and data used, Section 3 presents

the results of SDSM, NN, and the combined methodology, and Section 4 summarizes the study with

a discussion.

2. Materials and Methods

2.1. Downscaling Overview

Downscaling model relates the large-scale predictors with the local climate variables. The GCM

predictors are then applied to this model to find the local scale predictands. Statistical downscaling is

based on the view that regional climate occurs as an interplay of atmospheric, or oceanic circulation

and regional topography, land-sea distribution and land-use, and it is conditioned by the climate on

larger scales [16]. Conceptually, it can be written as

R = F (L),
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where R is the predictand (regional climate variables such as temperature or rainfall), L is the

predictor (large scale climate variables), and F is the transfer function deterministic or stochastic

that is conditioned by L.

Several statistical downscaling methods with varying complexity have been proposed and

used. Downscaling concepts, methodology and limitations are available in the literature [3,16,19,20].

Broadly they are sub-divided into weather typing, regression and generator methods. Some examples

are ANN, self-organizing maps, regression, canonical correlation and principal component analysis, etc.

Some limitations are stationarity assumptions; the relationship will remain valid outside the calibration

period and requirement of large observation data. Statistical methods are computationally inexpensive

and can be quickly used for impact assessments to provide onsite local information, for example,

daily rainfall at a station to drive a hydrology model.

One of the popular statistical downscaling methods is the statistical downscaling model (SDSM).

It is a combination of Multiple Linear Regression and the Stochastic Weather Generator [21]. SDSM is a

widely-used downscaling model, and is relatively simple to apply. Extensive literature is available on

the application of SDSM for climate-related studies and downscaling [22–25]. SDSM performs seven

functions of quality control and transformations, screening, model calibration, weather generator,

data analysis, graphical analysis and scenario generation [21]. Two optimization methods of Ordinary

Least Squares and Dual Simplex is available along with various other features like bias correction and

variance inflation. Predictors are selected through screening, using explained variance and partial

correlations. Calibration builds the model using the selected predictors. Validation is performed for the

new data subset and checked with statistical tests like t-tests, variance and mean. Validation is done by

comparing with the observation and future scenarios built with scenario generator. Many statistical

tests and analysis like frequency and time series analysis done within the Graphical User Interface

(GUI). SDSM is used in this study first to assess the skills of the neural network model, and then is

combined with the neural network.

Neural networks are defined by the interconnections, learning process and the activation functions.

NN are a regression-based statistical method that learns from data to make predictions and solve

complex problems. Multilayer perceptron (MLP) trained with backpropagation is probably the most

commonly used topology. Feedforward networks and training with backpropagation algorithm is

especially popular for hydrology-related studies [10]. Short-term memory of the network is the past

information available as data, and long-term memory is the information contained in the weights.

MLP have long-term memory while dynamic systems have short-term memory structures or recurrent

connections. Fully-recurrent networks have memory inside the topology but are complex. Time lagged

feed forward network (TLFN) are a special type of dynamic network with a short-term memory [26].

It is the most common temporal network consisting of multiple layers of processing elements (PE)

with feed forward connection. The focused TLFN have memory only at the input layer, thus can still

be adapted with the static backpropagation [26]. Time delayed neural network (TDNN) is a type of

the TLFN. The TDNN is an MLP with the input PE replaced with a tap delay. The focused TDNN

network with one hidden layer is shown in Figure 1 [26]. One advantage with the TDNN is that it

can quickly be trained with the static backpropagation algorithm. TDNN has been used in non-linear

system identification, time series prediction, and temporal pattern recognition [26]. Focused TDNN is

selected as the best performing network.
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Figure 1. Focused time-delayed neural network (TDNN) with one hidden layer and tap delay line of

k + 1 taps.

For scenarios, the IPCC AR5 uses representative concentration pathways (RCP), which replaced

the Special Report on Emissions (SRES) of AR4. Radiative forcing, expressed as Watts/m2 is the energy

balance (the difference between the positive forcing due to the greenhouse gasses and the negative

forcing due to aerosols) that stays in the atmosphere. There are four RCP’s developed by different

modeling groups, RCP’s 2.6, 4.5, 6 and 8.5. RCP 8.5 is a high emissions scenario with heavy use of

fossil fuel comparable to the SRES scenario A1F1. RCP 4.5 and 6 are intermediate emission scenarios

similar to SRES B1 and B2 respectively. The study uses RCP 4.5 and 8.5 scenarios.

2.2. Study Area and Data

The study area used is Colombo, Sri Lanka. The observation data is from the Asian

Precipitation Highly Resolved Observational Data Integration towards Evaluation of Water Resources

(APHRODITE) project. The APHRODITE data is daily gridded precipitation dataset, analyzed from

rain gauge observation data across Asia covering more than 57 years [27]. Data of 0.25◦ × 0.25◦

resolution is used for the grid point at lat/lon 6.875 × 79.875 centered at Colombo. IPCC recommends

that the climate baseline period should be representative of the recent climate and should be of

sufficient duration to include a range of climate variations and anomalies. The baseline period used

in the study is from 1961 to 1990 (30 years). A 30-year normal period is a popular climatological

baseline period, defined by the World Meteorological Organization (WMO). 1961–1990 is the current

WMO normal period which serves as a standard reference for climate and impact studies. Models are

validated for the period 1991–2005.

Models are built with the National Center for Environmental Prediction (NCEP) reanalysis [28].

Both the NCEP and the GCM have 26 large-scale predictors, shown in Table 1. The selection of the GCM

for Colombo is based on an ongoing research at the University of Tokyo. From downscaling the CMIP5

GCM’s, three models performed well for Sri Lanka in reproducing the seasonality. The three models

were the Canadian Earth System Model (CanESM2) of the Canadian Centre for Climate Modelling

and Analysis (CCCma), the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC.CM), Italy,

and Institut Pierre Simon Laplace (IPSLCM5A-LR), France. This study used the CanESM2. CanESM2 is

the second generation of the Earth System Model, which is the fourth generation coupled global climate

model of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) [29]. Daily predictor values

are available for grid box (128 × 64), covering the whole globe along uniform longitude resolution of

2.8125◦ and nearly uniform latitude resolution of roughly 2.8125◦. The GCM resolution is interpolated

to the NCEP resolution of 2.5◦ × 2.5◦, and data is normalized to 1961–1990 mean and standard

deviation. Data is available from http://www.cccsn.ec.gc.ca/?page=pred-canesm2. The longitudinal

and latitudinal index of the grid corresponds approximately to the centers of the grid boxes. Data used

in the study corresponds to the cell no BOX 030X_35Y. Data is available for both temperature and

precipitation, from 1961 to 2005 historical, 2006 to 2100 for three scenarios of RCP 2.6, 4.5 and 8.5 and

the NCEP/NCAR predictors for 1961 to 2005.

http://www.cccsn.ec.gc.ca/?page=pred-canesm2
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Table 1. Predictor variables of the Global Climate Model (GCM) and the National Center for

Environmental Prediction (NCEP).

SN Name Description

1 mslp mean sea level pressure
2 p1_f surface air flow strength
3 p1_u surface zonal velocity component
4 p1_v surface meridional velocity component
5 p1_z surface vorticity
6 p1_th surface wind direction
7 p1_zh surface divergence
8 p5_f 500 hPa air flow strength
9 p5_u 500 hPa zonal velocity component
10 p5_v 500 hPa meridional velocity component
11 p5_z 500 hPa vorticity
12 p5_th 500 hPa wind direction
13 p5_zh 500 hPa divergence
14 p8_f 850 hPa air flow strength
15 p8_u 850 hPa zonal velocity component
16 p8_v 850 hPa meridional velocity component
17 p8_z 850 hPa vorticity
18 p8_th 850 hPa wind direction
19 p8_zh 850 hPa divergence
20 p500 500 hPa geopotential height
21 p850 850 hPa geopotential height
22 prcp surface precipitation
23 s500 specific humidity at 500 hPa height
24 s850 specific humidity at 850 hPa height
25 shum surface specific humidity
26 temp surface mean temperature

p1 indicates near surface, p5, and p8 for 500 and 850 hPa heights.

3. Results

3.1. SDSM Downscaling

SDSM 4.2, an open source software, is used for the study. The user guide SDSM 4.2—A decision

support tool for the assessment of regional climate change impacts [21] can be used for first-time users

of the software. The model is calibrated with NCEP reanalysis from 1961 to 1990 and validated from

1991 to 2005. The selection of relevant predictors is an important task for the calibration of the model,

for both the SDSM and neural network, and has large impacts on the result. Predictors chosen should

not only have a strong correlation, but have a physically sensible meaning for the predictand being

downscaled [30]. Studies have suggested that mid-tropospheric geopotential heights and humidity

were the two most relevant predictors for daily precipitation [31], using MSLP for downscaling

rainfall [32], and humidity is required to capture the climate change effects on the water-holding

capacity of the atmosphere [20]. Screening, partial correlation and scatterplots in SDSM were used for

the selection of the predictors. The predictors chosen are four for average temperature; p500, p8_v,

shum, and temp; and six for precipitation; mslp, p1_f, p8_v, s500, shum, and temp. For the average

temperature, monthly model was used. The coefficient of regression r2 was 0.213, the sum of error SE

0.818. For the rainfall, a seasonal model was used with autoregression. The r2 was 0.139 for conditional

statistics, with SE of 0.510. Validation of the model results for average temperature and rainfall are

presented in the final result section.
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3.2. TDNN Downscaling

The neural network is developed using NeuroDimension’s Neuro-Solutions [26]. The average

temperature and the precipitation are modeled separately. First, the best network is selected with all

the 26 NCEP predictors as inputs to the neural network for the outputs of temperature or precipitation.

The best performing network is chosen after testing several networks with variations in memory type,

activation functions, and backpropagation algorithm. Other network topologies tested were: Linear

Regression, Multilayer Perceptron (MLP), and Time-lag Recurrent Network (TLRN). Performance

is compared with the root mean squared error (RMSE), mean squared error (MSE), the coefficient

of regression (r), and the hit score. TDNN network was selected as the best performing network.

TDNN is a type of TLFN which is an MLP with memory components to store past values of the data,

and allow the network to learn relationships over time. Different memory types for experimentation

include GammaAxon, LaguarreAxon, ContextAxon, etc.

The type of memory is TDNN Axon, hyperbolic tangent tanhAxon transfer function is used in the

hidden layer, bias axon at the output layer of the neural network, and trained with backpropagation

RProp. The size of the memory layer (the tap delay) depends on the input, and the task and has to be

determined on a case-by-case basis. Taps 5 and tap delay 1, and 10 PE’s in the hidden layer, are used

for both temperature and precipitation. Sensitivity analysis is a measure of relative importance of

predictors, and it is a measure of standard deviation of the output divided by the standard deviation of

the input [7]. The network is then retrained with the selected predictor variables. The predictors chosen

are five for average temperature; p1_v, p8_v, p850, shum, and temp and eight for precipitation; mslp,

p1_f, p1_u, p1_v, p1_zh, p8_v, s850, and shum. Data is tagged as: 1961–1985 for training, 1986–1990 for

cross-validation and 1991–2005 for testing. The sensitivity analysis and scatter plot for the average

temperature model is shown in Figure 2:

 

(a) Sensitivity analysis 

 

(b) Scatter plot. 

Figure 2. Average temperature Colombo (TACL).



Climate 2017, 5, 24 7 of 11

3.3. Final Results

The SDSM calibrated model is a parameter (.PAR) file which is used in the weather generator and

scenario generator to create the output files as .OUT file and a .SIM file. The .OUT file contains

the ensemble of outputs from the weather generator or the scenario generator. To apply the

SDSM-NN combined methodology, the regression output of the SDSM is replaced by the output of the

TDNN. A .OUT file, and .SIM file with the same name as the single column outputs from the TDNN is

created. Scenario generation and the other statistical analysis is done in SDSM using the new .OUT

files. With this method, SDSM can be used for scenario generation and to perform various downscaling

and statistical analysis with a neural network model.

Seasonal/annual model biases and RMSE are used to compare the performance of SDSM and TDNN.

The seasonal and annual mean model biases are given in Table 2 and RMSE in Table 3. For average

temperature, the biases and RMSE were lower for the NN for the spring and annual mean. The SDSM

errors were lower for winter, summer and autumn seasons. TDNN was better for winter and annual,

whereas SDSM was better for spring, summer and autumn seasons’ average temperature. The biases

and RMSE were lower for the NN for all the seasons and the annual mean for the NN. TDNN performed

better than SDSM for all the seasons and the annual mean. Figures 3 and 4 shows the monthly,

seasonal and annual biases. For monthly temperature, NN bias was lower for the months of April, May

and December, and for other months, SDSM bias was lower (Figure 3b). For monthly precipitation,

SDSM bias is lower for the months of February, March, August, October and November, and in other

months, NN bias was lower (Figure 4b). Overall, positive biases were observed for temperature and

negative biases for precipitation by both the models.

Table 2. Seasonal and annual model biases for statistical downscaling model (SDSM) and TDNN for

validation period.

Variable Model Winter Spring Summer Autumn Annual

Av. temp (◦C)
SDSM 0.04 0.21 0.2 0.16 0.16
TDNN −0.09 0.11 0.3 0.27 0.15

Rainfall (mm)
SDSM −0.5 −1.09 −0.68 −1.31 −0.89
TDNN −0.17 −0.09 0.08 −1.07 −0.31

Table 3. Seasonal and annual RMSE for SDSM and TDNN.

Variable Model Winter Spring Summer Autumn Annual

Av. temp (◦C)
SDSM 0.321 0.495 0.312 0.383 0.223
TDNN 0.34 0.467 0.398 0.418 0.22

Rainfall (mm)
SDSM 1.735 3.465 2.304 3.275 1.193
TDNN 1.49 3.027 2.225 3.266 0.722

−
− − − − −
− − − −

(a) (b) 

Figure 3. Average temperature validation (a) seasonal; (b) monthly.
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(a) (b)

Figure 4. Rainfall validation (a) seasonal; (b) monthly.

Seasonal and annual statistical distribution is shown with the box plot, for temperature (Figure 5)

and precipitation (Figure 6). The solid bar shows the monthly median value; boxes are an interquartile

range (25th–75th percentile); the whiskers have 95% of the values and the circle showing outliers.

Data distribution, skew and percentiles can be observed from the plot. Marginal differences between

the two models are observed in the distribution. As expected SDSM compares well with the observed

for temperature except for spring, where the NN median and distribution is closer to the observed.

The changes of the median temperature are well reproduced by SDSM for three seasons. A closer

agreement between NN and observations is found for the median precipitation for spring and summer.

Both models do not fully capture the range of the precipitation events.

 

Figure 5. Average temperature box plot.

 

Figure 6. Average precipitation box plot.
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The GCM future projections for 20’s (2011–2040), 50’s (2041–2070) and 80’s (2071–2099),

as compared with the current period of 1961–1990, is shown in Table 4.

Table 4. Future projections of increase in average temperature and rainfall.

Variable RCP Models 2020’s 2050’s 2080’s

Av. temp. (◦C)
4.5

SDSM 0.14 0.91 1.24
TDNN 0.15 0.99 1.39

8.5
SDSM 0.14 1.39 2.83
TDNN 0.14 1.54 3.03

Rainfall (%)
4.5

SDSM 0.7 10 13
TDNN 0.3 20 29

8.5
SDSM 5 14 33
TDNN 4 11 63

4. Discussion

The objective of this paper was to investigate if neural networks are better than the regression

based SDSM for downscaling of temperature and rainfall in Colombo. Seasonal and annual model

biases and the RMSE were used to assess the performance. With lower biases and RMSE for the winter,

summer and autumn seasons, the SDSM was marginally better than the NN for downscaling average

temperature. With lower biases and RMSE for all seasons and the annual mean, the NN performed

better than SDSM for downscaling rainfall. The paper used a combined methodology, using SDSM

with the regression outputs from the neural network. With this method, SDSM can still be used along

with a neural network model for higher skills in downscaling for climate impact studies.

A limitation of the study is the use of one GCM for the downscaling, and the results will be

largely dependent on the climate change signals from one GCM. Other limitations that are common

to statistical methods are the assumptions of stationarity. Some of the further research directions to

overcome these limitations are: to use this model for 2 or 3 selected GCMs, and to obtain ensemble

average and uncertainty analysis. For RCP 8.5, the SDSM projections of an annual increase in average

temperature for Colombo was 2.83 ◦C and 3.03 ◦C for TDNN. The annual increase in rainfall is

projected at 33% and 63% for SDSM and TDNN.

Climate change is likely to cause more extreme weather events, flooding and droughts. Results of

this study are indicating an increase in rainfall and flooding events in Colombo under an increased

emissions scenario. The results from this study will augment other investigation and research for

improving the prediction of rainfall. IPCC AR5 reports gaps in understanding the climate impacts

on precipitation at the catchment scales [33]. Further work to downscale variability and extreme

indices are important for impact studies. Within the stated limitations, the results provide daily values

of temperature and rainfall for applications, like driving a hydrology model for the Colombo area.

It also provides a scientific guideline for impact assessment studies, framing policies and long-term

adaptation planning.

Acknowledgments: This study is a part of Ph.D. in Sustainability Science of the United Nations University,
Institute for the Advanced Study of Sustainability (UNU-IAS), Tokyo, Japan and the scholarship provided by the
jfScholarship for UNU-IAS. Model data from the Canadian Climate Data and observation data from APHRODITE
is kindly acknowledged. We would also like to thank the reviewers for their thoughtful suggestions and comments
that led to substantial improvement of the paper.

Author Contributions: Srikantha Herath provided guidance in all stages of the work, and arranged from the
United Nations University, Japan, equipment and funds for the purchase of the software. Binaya Kumar Mishra
assisted in data analysis and contributed to writing the article.

Conflicts of Interest: The authors declare no conflict of interest.



Climate 2017, 5, 24 10 of 11

References

1. IPCC Summary for Policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D.,

Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.;

Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1–33.

2. Northon, K. NASA, NOAA Data Show 2016 Warmest Year on Record Globally. Available online: https:

//www.nasa.gov/press-release/nasa-noaa-data-show-2016-warmest-year-on-record-globally (accessed on

5 March 2017).

3. Zorita, E.; von Storch, H. The Analog Method as a Simple Statistical Downscaling Technique: Comparison

with More Complicated Methods. J. Clim. 1999, 12, 2474–2489. [CrossRef]

4. Maraun, D.; Wetterhall, F.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.;

Themeßl, M.; Venema, V.K.C.; et al. Precipitation downscaling under climate change: Recent developments

to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48, 1–38. [CrossRef]

5. Mearns, L.O.; Bogardi, I.; Giorgi, F.; Matyasovszky, I.; Palecki, M. Comparison of climate change scenarios

generated from regional climate model experiments and statistical downscaling. J. Geophys. Res. 1999, 104,

6603. [CrossRef]

6. Murphy, J. An evaluation of statistical and dynamical techniques for downscaling local climate. J. Clim. 1999,

12, 2256–2284. [CrossRef]

7. Dibike, Y.B.; Coulibaly, P. Temporal neural networks for downscaling climate variability and extremes.

Neural Netw. 2006, 3, 1636–1641. [CrossRef] [PubMed]

8. Silverman, D.; Dracup, J.A. Artificial Neural Networks and Long-Range Precipitation Prediction in California.

J. Appl. Meteorol. 2000, 39, 57–66. [CrossRef]

9. Mendes, D.; Marengo, J.A. Temporal downscaling: A comparison between artificial neural network

and autocorrelation techniques over the Amazon Basin in present and future climate change scenarios.

Theor. Appl. Climatol. 2010, 100, 413–421. [CrossRef]

10. Maier, H.; Dandy, G. Neural Networks for the production and forecasting of water resource Environmental

modelling and software variables: A review and modelling issues and application. Environ. Model. Softw.

2000, 15, 101–124. [CrossRef]

11. Hsieh, W.W.; Tang, B. Applying neural network models to prediction and data ananysis in meteorology and

oceanography. Bull. Am. Meteorol. Soc. 1998, 79, 1855–1870. [CrossRef]

12. Abhishek, K.; Singh, M.P.; Ghosh, S.; Anand, A. Weather Forecasting Model using Artificial Neural Network.

Procedia Technol. 2012, 4, 311–318. [CrossRef]

13. Shrivastava, G.; Karmakar, S.; Kumar Kowar, M.; Guhathakurta, P. Application of Artificial Neural Networks

in Weather Forecasting: A Comprehensive Literature Review. Int. J. Comput. Appl. 2012, 51, 17–29. [CrossRef]

14. Cannon, A.J.; McKendry, I.G. A graphical sensitivity analysis for statistical climate models: Application

to Indian monsoon rainfall prediction by artificial neural networks and multiple linear regression models.

Int. J. Climatol. 2002, 22, 1687–1708. [CrossRef]

15. Liu, Z.; Peng, C.; Xiang, W.; Tian, D.; Deng, X.; Zhao, M. Application of artificial neural networks in global

climate change and ecological research: An overview. Chin. Sci. Bull. 2010, 55, 3853–3863. [CrossRef]

16. Von Storch, H.; Hewitson, B.; Mearns, L. Review of Empirical Downscaling Techniques. In Regional Climate

Development under Global Warming; General Technical Report; RegClim: Torbjørnrud, Norway, 2000; pp. 29–46.

17. Walter, A.; Schonwiese, C.D. Nonlinear statistical attribution and detection of anthropogenic climate change

using a simulated annealing algorithm. Theor. Appl. Climatol. 2003, 76, 1–12. [CrossRef]

18. Nayak, D.; Mahapatra, A.; Mishra, P. A survey on rainfall prediction using artificial neural network. Int. J.

Comput. Appl. 2013, 72, 32–40.

19. Hewitson, B.C.; Crane, R.G. Climate downscaling: Techniques and application. Clim. Res. 1996, 7, 85–95.

[CrossRef]

20. Wilby, R.L.; Wigley, T.M.L. Downscaling general circulation model output: A review of methods and

limitations. Prog. Phys. Geogr. 1997, 21, 530–548. [CrossRef]

21. Wilby, R.L.; Dawson, C.W. SDSM 4.2—A Decision Support Tool for the Assessment of Regional Climate

Change Impacts User Manual. Available online: http://co-public.lboro.ac.uk/cocwd/SDSM/SDSMManual.

pdf (accessed on 1 February 2017).

https://www.nasa.gov/press-release/nasa-noaa-data-show-2016-warmest-year-on-record-globally
https://www.nasa.gov/press-release/nasa-noaa-data-show-2016-warmest-year-on-record-globally
http://dx.doi.org/10.1175/1520-0442(1999)012&lt;2474:TAMAAS&gt;2.0.CO;2
http://dx.doi.org/10.1029/2009RG000314
http://dx.doi.org/10.1029/1998JD200042
http://dx.doi.org/10.1175/1520-0442(1999)012&lt;2256:AEOSAD&gt;2.0.CO;2
http://dx.doi.org/10.1016/j.neunet.2006.01.003
http://www.ncbi.nlm.nih.gov/pubmed/16527456
http://dx.doi.org/10.1175/1520-0450(2000)039&lt;0057:ANNALR&gt;2.0.CO;2
http://dx.doi.org/10.1007/s00704-009-0193-y
http://dx.doi.org/10.1016/S1364-8152(99)00007-9
http://dx.doi.org/10.1175/1520-0477(1998)079&lt;1855:ANNMTP&gt;2.0.CO;2
http://dx.doi.org/10.1016/j.protcy.2012.05.047
http://dx.doi.org/10.5120/8142-1867
http://dx.doi.org/10.1002/joc.811
http://dx.doi.org/10.1007/s11434-010-4183-3
http://dx.doi.org/10.1007/s00704-003-0008-5
http://dx.doi.org/10.3354/cr007085
http://dx.doi.org/10.1177/030913339702100403
http://co-public.lboro.ac.uk/cocwd/SDSM/SDSMManual.pdf
http://co-public.lboro.ac.uk/cocwd/SDSM/SDSMManual.pdf


Climate 2017, 5, 24 11 of 11

22. Tryhorn, L.; Degaetano, A. A comparison of techniques for downscaling extreme precipitation over the

Northeastern United States. Int. J. Climatol. 2011, 31, 1975–1989. [CrossRef]

23. Tang, J.; Niu, X.; Wang, S.; Gao, H.; Wang, X.; Wu, J. Statistical downscaling and dynamical downscaling of

regional climate in China: Present climate evaluations and future climate projections. J. Geophys. Res. Atmos.

2016, 121, 2110–2129. [CrossRef]

24. Mahmood, R.; Babel, M.S. Future changes in extreme temperature events using the statistical downscaling

model (SDSM) in the trans-boundary region of the Jhelum river basin. Weather Clim. Extrem. 2014, 5, 56–66.

[CrossRef]

25. Hassan, Z.; Shamsudin, S.; Harun, S. Application of SDSM and LARS-WG for simulating and downscaling

of rainfall and temperature. Theor. Appl. Climatol. 2014, 116, 243–257. [CrossRef]

26. Principe, J.C.; Euliano, N.R.; Lefebvre, W.C. Neural and Adaptive Systems: Fundamentals through Simulations;

John Wiley & Sons, Inc.: New York, NY, USA, 2000.

27. Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. Aphrodite constructing a

long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am.

Meteorol. Soc. 2012, 93, 1401–1415. [CrossRef]

28. Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.;

Woollen, J.; et al. The NCEP/NCAR 40 year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471.

[CrossRef]

29. Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am.

Meteorol. Soc. 2012, 93, 485–498. [CrossRef]

30. Wilby, R.L.; Charles, S.P.; Zorita, E.; Timbal, B.; Whetton, P.; Mearns, L.O. Guidelines for Use of Climate

Scenarios Developed from Statistical Downscaling Methods. Analysis 2004, 27, 1–27.

31. Cavazos, T.; Hewitson, B.C. Performance of NCEP–NCAR reanalysis variables in statistical downscaling of

daily precipitation. Clim. Res. 2005, 28, 95–107.

32. Timbal, B. Southwest Australia past and future rainfall trends. Clim. Res. 2004, 26, 233–249. [CrossRef]

33. Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.;

Liao, H.; Lohmann, U.; et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis;

Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate

Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 571–658.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/joc.2208
http://dx.doi.org/10.1002/2015JD023977
http://dx.doi.org/10.1016/j.wace.2014.09.001
http://dx.doi.org/10.1007/s00704-013-0951-8
http://dx.doi.org/10.1175/BAMS-D-11-00122.1
http://dx.doi.org/10.1175/1520-0477(1996)077&lt;0437:TNYRP&gt;2.0.CO;2
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.3354/cr026233
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Downscaling Overview 
	Study Area and Data 

	Results 
	SDSM Downscaling 
	TDNN Downscaling 
	Final Results 

	Discussion 

