
Improving global rainfall forecasting with a weather type approach in Japan
Jean-Francois Vuillaume and Srikantha Herath

Department of Global Changes and Sustainability, United Nations University Institute for the Advanced Study of Sustainability (UNU-IAS), Tokyo,
Japan

ABSTRACT
An automated version of the weather type classification scheme was performed over Japan to
characterize daily circulation conditions. A daily gridded field of mean sea-level pressure (MSLP) from
the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis dataset (ERA-interim)
and the THORPEX Interactive Grand Global Ensemble (TIGGE) daily forecast dataset were used. The
weather type is advantageous as it provides an opportunity to improve global rainfall prediction by
refining statistical bias correction. We distinguished 11 weather types: anticyclone, cyclone, hybrid and
eight purely wind directions. The results indicate that the main weather types contributing to the total
volume of rainfall are cyclone, hybrid, purely westerly and northwest winds. A gamma-based bias
correction decreases the global rainfall forecast root mean square by 10%, while specific weather type
gamma bias correction accounts for 5–10% root mean square error reduction, with a total decrease of
errors up to a maximum of 20%. Both global and weather type bias corrections improve the extreme
dependency scores (EDS), but for different extreme rainfall thresholds. The study advocates the use of
weather type bias-correction methods for extreme event rainfall intensity corrections higher than
100 mm/d.
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1 Introduction

The classification of weather patterns is an effective way of
describing atmospheric circulation in a consistent manner
(Rousi et al. 2014). It allows the definition of sub-categories
of weather where patterns can be drawn. First, it accounts for
the variability of the daily weather in greater detail than only
considering the average temperature or rainfall of a specific
location. Second, the use of automatic weather pattern classi-
fication allows the use of a computer algorithm to classify
events for both forecast and climate change purposes. It then
allows the use of a reasonable and manageable number of
discrete classes (Huth et al. 2008) in comparison to the com-
plexity of daily weather. Moreover, applications of weather
typing are increasing in the areas of air quality, hydrology,
forest fires, climate change variability and risks and hazards
(Demuzere et al. 2008).

Originally, the Lamb Weather Type (LWT) classification
(Lamb 1972) and the Grosswetterlagen catalogues (Hess and
Brezowsky 1952) were based on pressure indices. However,
subjective studies were also carried out based on circulation
indices, which were initially developed for the British Isles
(Jenkinson and Collison 1977, Jones et al. 1993). The
Circulation Weather Types (CWTs) classification was carried
out to identify the type of weather associated with a particular
synoptic situation. A classical approach consists of computing
the following indices: southerly flow (SF), westerly flow (WF),
total flow (F), southerly shear vorticity (ZS), westerly shear
vorticity (ZW) and total shear vorticity (Z). These indices are
computed using sea-level pressure (SLP) values obtained for

the 16 grid points distributed on a regular grid of 5, 6, 8 or 10
degrees. Results indicate that there is potential to improve the
observation and prediction of temperature and the rainfall
(Bower et al. 2007, Calvo et al. 2012, Lee and Sheridan 2012,
Kenawy et al. 2014, Baltacı et al. 2015).

Weather types that occur over an area combine meteorolo-
gical parameters, reflecting air mass characteristics at the sur-
face, with synoptic conditions prevailing over an area. In
general, quantitative meteorological parameters are used in
the procedure, such as temperature, precipitation, relative
humidity, wind velocity and sunshine duration. Most circula-
tion weather type classifications are for a specific region; this
explains the large variety of classifications that have been devel-
oped. They are typically defined for each day or group of
consecutive days as a simple way to reflect the local circulation
that actually occurred. Different methods exist for the classifi-
cation of weather types, as shown by Huth et al. (2008) and
Philipp et al. (2010). In addition, indices can be derived from
mean sea-level pressure (MSLP) or geopotential height at
500 hPa; the former approach is currently most popular.

Bias correction of rainfall forecasts is necessary as inten-
sity is underestimated by global numerical weather fore-
casts. Due to the limitations of current model resolution,
the parameterization function is used to overcome this
through modelling physically-based rainfall phenomena
such as convective cells. In general, regression methods,
also known as method of statistics (MOS), are used.
Original work from Glahn and Lowry (1972), developed
further by others, established a function to correct the
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systematic error or bias by the numerical weather predic-
tion model. However, recent methods have mostly investi-
gated enhancing the sharpness of ensemble forecast
prediction by ensemble quantile correction (Verkade et al.
2013) and the ensemble method of statistics (EMOS)
(Gneiting and Katzfuss 2014). In addition, operational
weather centres, such as the European Centre for
Medium-Range Weather Forecasts (ECMWF), do not per-
form post-processing bias correction; however, it is used by
regional weather centres for dynamic downscaling. Indeed,
underestimation of rainfall by numerical weather prediction
systems is a recurrent issue. Furthermore, Bayesian model
averaging (Raftery et al. 2005) focuses on improving the
quality of ensemble forecasting with a Bayesian approach.
However, the correction does not take advantage of the
higher predictability of parameters compared to global rain-
fall, such as the MSLP.

A lot of attention has been paid to weather type (WT)
classification and its occurrence, for instance, in climate studies
(Riediger and Gratzki 2014), but its potential has not been
investigated in numerical forecasts. In this study, 15 weather
types were used, focusing on cyclone and anticyclone compo-
nents within a seasonal and multi-approach model. However,
the classification was not used as a driver to refine bias-correc-
tion methods by linking them with specific WT rainfall signa-
tures. The recent release of the THORPEX Interactive Grand
Global Ensemble (TIGGE) forecast dataset through THe
Observing system Research and Predictability EXperiment
(THORPEX) framework of the World Meteorological
Organization (WMO) has made an extremely valuable dataset
for forecast evaluation available. This dataset covers mid-range
forecasts for up to 15 days. It is then possible to estimate the
WT based on the MSLP forecast 10 days ahead and evaluate its
persistence. Mean sea-level pressure exhibits the highest pre-
dictability score among the parameters in the ECMWF model
(Haiden et al. 2014). Current ECMWF rainfall forecasts are
generally reported to be accurate for up to 5–7 days and, there-
fore, gathering information for up to 10 days is already a
challenge. Therefore, WT lead time skills show strong potential
to improve extreme rainfall forecasts.

In this study, we used a WT approach of clustering the bias-
corrected global rainfall forecast function. We used Japan as an
example to illustrate the potential of the method. The method
was validated in 10 major urban centres that are focused in the
northwest of Japan: Tokyo, Yokohama, Nagoya, Saitama,
Sendai, Chiba, Niigata, Hamamatsu, Funabashi and Hachioji
(in order of population size). Our study specifically targeted
rainfall in small and highly urbanized watersheds.

2 Data: observation, re-analysis, forecast data and
observation station

Three online source datasets were investigated in this study:
(1) the Automated Meteorological Data Acquisition System
(AMEDAS) from the Japanese Meteorological Agency (JMA);
(2) the ECMWF Re-Analysis interim (ERA-interim); and (3)
the THORPEX Interactive Grand Global Ensemble (TIGGE).
These are detailed below and a summary of the available
period and duration of each dataset is shown in Table 1.

As indicated, the TIGGE ECMWF dataset covers only 9 years
of forecast data. In addition, AMEDAS data available through
the Japanese Meteorological Agency (JMA) provide a uniform
rainfall record with an average raingauge density of 17 km and
10 min sampling over Japan. Data for the whole of Japan can be
easily accessed on the internet. However, even with a high
density and short time step record (10 min), the data have
been recognized as insufficient to fully predict natural hazards
(Shoji and Kitaura 2006) in Japan. Several stations retrieved
from the AMEDAS Japan database are located in major urban
cities. Table 2 summarizes the main Japanese urban centres by
population size and latitude/longitude coordinates.

The locations of AMEDAS observation stations, as well as the
ERA and forecast grids, are illustrated in Figure 1. The ERA-
Interim dataset is the latest global atmospheric re-analysis pro-
duced by the ECMWF. It is an atmospheric model and assim-
ilation system much improved from the ERA-40 and, therefore,
ERA-Interim represents a third-generation re-analysis. ERA-
Interim extends from 1979 to the present day. The key strengths
of the ERA-Interim are summarized as (Dee et al. 2008): (a) a
complete spatial and temporal dataset of multiple variables at
high resolution; and (b) an improvement in low-frequency
variability and stratospheric circulation. There are, however,
still limitations, such as high-intensity water cycling (precipita-
tion, evaporation) over the oceans, and positive biases in tem-
perature and humidity below 850 hPa in the Arctic compared to
radio sounding: it does not capture the low level of temperature
inversion. Regarding dataset quality, Kenawy et al. (2014) con-
firmed that ERA-40 and National Centers for Environmental
Prediction/National Center For Atmospheric Research (NCEP/
NCAR) re-analysis gave similar results in a case study conducted
over Saudi Arabia.

The TIGGE dataset provides predictions from the leading
NWP centres around the globe. It is dedicated to scientific
research on predictability and development of probabilistic
weather forecasting methods. THORPEX is part of the
World Weather Research Programme, under the auspices
of the WMO Commission for Atmospheric Sciences
(CAS), and is a key research component of the WMO
Natural Disaster Reduction and Mitigation Programme.

Table 1. Available datasets used for the study.

Dataset Date available Duration (in years)

ERA-interim ECMWF 1 January 1979 34
TIGGE ECMWF 2 November 2006 9
AMEDAS station 1978–2015 37

Table 2. Meteorological observation stations retrieved from AMEDAS database
and used in this study.

Station Urban population Lat., N Long., E

Tokyo 8 637 000 35.68 139.73
Yokohama 3 631 000 35.45 139.65
Nagoya 2 239 000 35.17 136.92
Saitama 1 192 000 35.86 139.65
Sendai 1 030 000 38.25 140.89
Chiba 939 000 35.6 140.12
Niigata 813 000 37.92 139.05
Hamamatsu 534 620 34.71 137.73
Funabashi 533 270 35.69 140.02
Hachioji 507 100 35.45 139.32
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The TIGGE data provide a unique set of forecast data that
can be compared and optimized in all regions of the globe
(Bougeault et al. 2010). We used the control forecast of the
Grand Ensemble rainfall computed by the ECMWF
Integrated Forecast System (IFS) as it presents a larger
range of the time period available (9 years) and better
accuracy of the forecast products.

3 Methods

3.1 Weather type determination

The COST 733 EU project proposed the following definition
for weather typing: a weather type is defined as a “simple,
discrete characterisation of the current atmospheric conditions
on the nominal scale. It may include temperature, precipitation
and other climate elements for characterisation” (COST733
2015).

We used MSLP-based methods and the popular “Gross”
WTs defined by the German weather agency (Deutscher
Wetterdienst) and based on Lamb WTs. The classification
uses six different parameters that allow the computation of
the wind flow direction and the anticyclone/cyclone character
of perturbation. The last weather type is labelled “hybrid
cyclone” or “hybrid anticyclone”, or simply “hybrid”. The
six parameters are defined as southerly flow (SF, Equation
(1)), westerly flow (WF, Equation (2)), westerly shear vorticity
(ZW, Equation (3)), southerly shear vorticity (ZS, Equation
(4)), resultant flow (RF, Equation (5)) and total shear vorticity
(Z, Equation (6)), and were computed as given by Trigo and
DaCamara (2000):

SF ¼ 1:35 0:25 p5 þ 2p9 þ p13ð Þ � 0:25 p4 þ 2p8 þ p12ð Þ½ � (1)

WF ¼ 0:5 p12 þ p13ð Þ � 0:5 p4 þ p5ð Þ½ � (2)

ZW ¼ 1:12 0:5 p15 þ p16ð Þ � 0:5 p8 þ p9ð Þ½ �
� 0:91 0:5 p8 þ p9ð Þ � 0:5 p1 þ p2ð Þ½ � (3)

ZS ¼ 0:85 0:25 p6 þ 2p10 þ p14ð Þ � 0:25 p5 þ 2p9 þ p13ð Þ½ �
(4)

RF ¼ WF2 þ SF2
� �0:5

(5)

Z ¼ ZSþ ZW (6)

where p1, p2, . . ., p16 represent the pressure points located on
the grid (Fig. 1) numbered from top left to bottom right.

First, a grid of daily pressure points for the period 1979–
2014 was defined with 5° resolution (between 132–147°E and
25–45°N) and this was computed based on the ERA-Interim
data. Then, the direction of a WT—southerly, southeasterly,
easterly, northeasterly, northerly, northwesterly, westerly and
southwesterly (S, SE, E, NE, N, NW, W and SW) was defined.

Finally, the classification criteria were defined by the flow
strength (F), vorticity (Z) and mean direction (D). Jenkinson
and Collison (1977) found that simple relationships between
F and Z determined whether the weather was pure Lamb
directional flow (S, SE, E, NE, N, NW, W and SW), hybrid
or synoptic structure (anticyclone or cyclone):

– if Abs(Z) < F, the magnitude of the total shear is lower
than the resulting flow, then the weather type is purely
directional. The direction of a circulation type is defined

Figure 1. Pressure point locations used to compute the GLW weather classification. The grid represents an extract of the ECMWF grid onshore at 0.5° resolution. The
stations used for rainfall computation (Tokyo, Yokohama, Nagoya, Saitama, Sendai, Chiba, Niigata, Hamamatsu, Funabashi and Hachioji) are indicated by crosses.
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by adding 180° to the value if WF is positive. A 45°
segment is allocated for each direction;

– if Abs(Z) > 2F, the weather type is either anticyclone or
cyclone;

– if Abs(F) is between Abs(Z) and F, the weather type is
considered to be a synoptic hybrid type.

The classification of weather types is summarized in
Table 3.

3.2 Rainfall cluster evaluation

Rainfall distribution can be approximated by a gamma func-
tion defined by Equation (7). We assumed that both observed
and simulated intensity distributions are well approximated
by the gamma distribution, as shown by Wilks (1995), Katz
(1999) and Piani et al. (2010). For each weather type, we
estimated the shape (Equation (8)) and scale (Equation (9))
of the available rainfall time series:

pdf p; α; βð Þ ¼
xα�1e�

p
β

� �

βkΓ kð Þ
� � (7)

(for p > 0 and α; β > 0)

α ¼ �p=σp
� �2

(8)

β ¼ σp= p2
� �

(9)

The shape and scale are used to determine the bias-correction
function associated with each weather type.

3.3 Bias correction

The bias-correction methods developed for weather forecasts
use a regression method to reduce the error of the global rainfall
forecast model. We used a cumulative probability distribution
bias-correction approach as a regressionmethod to evaluate and
correct the bias. A calibration/validation approach was used in
order to equally divide the available time series. For each
weather type associated with a major rainfall component, the
shape and scale of the distribution were estimated with a gamma
function on a calibration period. Then this regression law was
applied in a validation period. Finally, we estimated the root
mean square error (RMSE) for the same period and compared
the WT approach and a global bias correction (not considering
WT). A summary of the main steps is given below:

(1) The time series is divided into calibration (2006–2011)
and validation (2012–2014) sets.

(2) The scale and shape are computed for the cumulative
probability distribution: calibration period for both
observed and forecast data.

(3) A correction coefficient is computed between the fore-
cast and the observation.

(4) The coefficient is applied to the validation period.
(5) The quality of correction is estimated.

4 Results and discussion

The results obtained are discussed in the four subsections
below: (i) the rainfall pattern that characterized extreme rain-
fall and WT, (ii) the rainfall forecast skills of WT, (iii) the bias
correction of WT-based forecasts and (iv) statistical analysis
the WT bias-correction performance.

4.1 Weather type characteristics

The physical characteristics of the WT were investigated in terms
of mean rainfall (Fig. 2), mean specific humidity (Fig. 3), mean
temperature (Fig. 3) and mean average wind velocity intensity
(Fig. 3). All the classifications present cyclone, hybrid and SW
wind, with the largest mean intensity in terms of rainfall, humid-
ity, temperature and wind speed. Mitigated results appeared
regarding the impact of the east, southeast and anticyclone events.
Comparison with the classification of the other parameters sup-
ports the WT classification of mean rainfall.

4.2 Rainfall pattern

We estimated the occurrence of the WTs over the east of Japan
for the period between 1979 and 2014. The analysis ofWTs over
Japan and their contributions as a percentage of total rainfall
volume are illustrated in Figure 2. The hybridWT presented the
highest occurrence in Japan during the period 1979–2014.
However, the water volume contribution was estimated at 23%
and the average number of extreme events with above 100 and
150 mm/d was two, two and one event(s) in Tokyo, Hachioji
and Yokohama, respectively. The second largest WT observed
was anticyclone, which was associated with about 5% of the total
water contribution and does not account for extreme events.
Cyclonic events presented the largest rainfall contribution (34%)
for the 1979–2014 period and produced the highest rate of
extreme events above the 150 mm/d threshold. Furthermore,
the purely NW and westerly wind WTs were, respectively, the
third or fourth main contributors of total rainfall with extreme
events observed at several stations.

Figures 4 and 5 illustrate the variability of WT occurrence
and its seasonal variability for the period 1979–2014. Long-term
change indicates an increase in rainfall associated with cyclone
and hybrid WTs, while other WTs recorded a decrease in
occurrence. Seasonal variation from 1979 to 2014 did not permit
establishment of a strong and persistent indicator of pattern
change in the distribution of WT for the period considered.

Cyclone, hybrid, NW, SW and southerly wind WTs were the
major contributors of extreme events, as illustrated in Figure 6.
This observation can be confirmed from data for most of the 10
urban areas, except for Niigata and Hamamatsu stations.

Table 3. Summary of classification of weather types.

Weather types Classification criteria

Purely directional (SE, E, NE, N, NW, W, SW, S) |Z| < F
Cyclonic Z > 2F, Z > 0
Anticyclonic |Z| > 2F, |Z| < 0
Hybrid cyclonic, and hybrid anticyclonic F < |Z| < 2F
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Moreover, these two locations exhibited an additional pure wind
direction contribution and, therefore, were affected by their geo-
graphical location in relation to the seacoast, the centralmountain
chain and the regional wind patterns. Thus, Hamamatsu is
exposed to easterly winds and Niigata to northerly winds, which
are associated with rainfall. Nagoya presented few extreme events
above 100 mm/d associated with anticyclone WT. Considering
these findings, only four rainfall WT patterns were investigated:

– Hybrid
– Cyclonic
– North-westerly (NW) wind
– Westerly wind

The above four WTs produced the vast majority of
extreme events in the region, with rainfall values higher
than 100 and 150 mm/d. The shape versus scale of rainfall
was computed for all 10 stations (see Table 2). The results of
the analysis of the rainfall patterns are illustrated in Figure 7,
which indicates the dominance of high scale numbers asso-
ciated with extreme rainfall events. Hence, clusters of rainfall
events are characterized by high scale and low shape numbers
(Husak et al. 2007).

Figure 2. (a) Occurrence of weather types in Tokyo for 1979–2014. (b) Rainfall for each WT as a percentage of the total in Tokyo. Hybrid corresponds to a system
with a circulation flow between purely directional flow and shear flow.

Figure 3. Weather type classification for total vertical humidity flux, temperature and wind velocity.

Figure 4. Annual variation of WT associated with rainfall above 10 mm/d from
1979 to 2014 and associated linear trends.
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Figure 5. Five-year average seasonal variation of WTs associated with rainfall above 10 mm/d.

Figure 6. Occurrence of extreme event(s) for each WT at the meteorological stations located in major Japanese urban centres: (a) >100 mm/d, (b) >150 mm/d.

Figure 7. Cluster classification of rainfall retrieved in AMEDAS for the 10 study stations in Japan during the period 1979–2014. (a) Shape versus scale plot of rainfall
events for each station per WT. (b) Interpretation of the rainfall type from a majority of extreme events towards fewer events. (c) Illustration of the clusters, where a
cluster may enclose several cities.
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4.3 Weather type forecast skills

ForecastWTs are derived from globalMSLP forecasts. TheMSLP
is valued as the most skilful forecast parameter of global data.
Therefore,WTs have the potential to improve middle-range rain-
fall forecasts. The performance of the WT approach is illustrated
in Figure 8. Anticyclone, cyclone, purelyNWwind, hybrid, purely
southerly and northerly wind WTs exhibit higher predictability
than randomness over a 10-day forecast. Only pure westerly wind
presents low predictability and no skill after 4 days. Moreover,
cyclonic, hybrid and westerly wind show predictability skills of up
to 10 days. The purely NWwind has forecast skill predictability of
up to 8 days. The cumulative predicted rainfall versus observed
rainfall at Tokyo station for +24, +48, +120 and +240 h is illu-
strated in Figure 9. Heavy rainfall associated with cyclonic events
is clearly identified on each of the forecasts. Furthermore, the
extreme events associated with hybrid and westerly WTs are also
identified (example of the +120 h forecast). The low predictability
of theNWwindWT can be observed through the low number for
this WT on each chart. The number of rainfall events without an
associated WT (black dot) increases from +24 h to +240 h fore-
casts, illustrating the reduction in skill ofWTswith increasing lead
time. Therefore, the number of misses and false negative forecasts

Figure 8. Skill scores of weather forecasts up to 10 days. The skill score is given
from 0 to 1, where 1 indicates a perfect WT forecast, and a score <0.09 indicates
no prediction skill.

Figure 9. Tokyo observations versus raw (i.e. not corrected) +24 h, +48 h, +120 h and +240 h forecasts for all weather types for the period 2006–2014. Note that the
dot without any symbol represents a missed WT forecast. The symbols localized at 0 on the x-axis and y-axis are missed forecasts or false alarms.
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increases. This appears on both the vertical and horizontal axes on
Figure 9 and increases with lead time.

4.4 Bias correction of forecast

A regression function based on cumulative probability distribu-
tion correctionwas used to forecast rainfall at 24, 48, 120 and 240h
lead times. Figure 10 illustrates the correction for the 24 h global

rainfall forecast. It highlights the underestimation bias of the
model. The bias of the model limits the prediction of rainfall,
particularly for intensity higher than 100 mm/d. The lower per-
formance of extreme rainfall prediction typically above 100mm/d
is indicated by the absence of the yellow dot above this threshold.
The correction is particularly efficient for intensity over 100 mm/
d. Then, corrected rainfall covers the whole range of intensity up
to 160 mm/d instead of 90 mm/d for the raw forecast.

Figure 11 illustrates the regression function computed for
the 24, 48, 120 and 240 h ahead forecasts at the Tokyo station.
For each forecast, the correction without WT is illustrated
(black dot), as well as for the WTs: hybrid, cyclone, antic-
yclone and the eight pure wind directions. Rainfall bias cor-
rection can diverge by WT and by lead time.

Moreover, according to the results, which confirmed what
previous studies had found, rainfall numerical weather forecasts
indicate the need for positive bias correction. Moreover, the
cyclonic and hybrid WTs diverge slightly from the global bias
correction. This confirms earlier results (shown in Fig. 3), which
highlighted hybrid and cycloneWTs as the main contributors of
extreme rainfall. However, the 240 h lead-time global forecast
illustrates the largest difference between the global correction
and cyclonicWT correction. A similar case occurs for the hybrid
WT at 48 and 120 h lead-time forecasts.

The purely NW wind WT presents a pattern of large
divergence compared to the global bias correction, this dif-
ference decreases from short-term forecasts (+24 h, +48 h) to
mid-term (+240 h), mainly due to the use of cumulative
rainfall, which tends to decrease the effect of high intensity
error in the forecast. The pure NW wind WT presents a more
complex bias correction with a larger variability pattern than

Figure 10. Rainfall cumulative distribution corrections for observations and +24 h
forecast at the Tokyo station. The AMEDAS observed rainfall is represented by the
grey crosses. The dotted curve indicates the original TIGGE forecast and the black
triangles mark the corrected cumulative rainfall function.

Figure 11. Bias correction model for each WT in Tokyo from 2006 to 2014: ECMWF raw rainfall forecast at +24 h, +48 h, +120 h and +240 h versus observations. The
black line represents the correction function without WT.
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other WTs. Therefore, from an overestimation of rainfall
patterns for +24 h and +48 h, it becomes null for the cumu-
lative +120 h before being aligned with the global WT line.
The westerly wind WT correction curve is aligned with the
NW wind for +24 h and +120 h. It becomes a null correction
for the +240 h forecast. The purely westerly wind WT pre-
sents a similar pattern to that observed for the NW wind bias
correction function. However, it diverges for +48 h and
+240 h. This observation is interpreted by the fact that purely
westerly and NW winds share common characteristics.

The results of the bias correction at the Tokyo station for
different WTs, at +24 h forecast, are illustrated in Figure 12,
which highlights the performance of the bias correction while
not considering the differences between WTs. Figures 12(b), (c)
and (d) present the result of the correction of the forecast at the
Tokyo station for the hybrid WT, while Figure 12(a) shows the
performance of the global bias correction (without WT). As
illustrated, the hybrid type and both purely westerly and NW
windWTs show lower records than the cyclonicWT. Therefore,
cyclonic WT bias correction shows similarity with the global
approach. However, an improvement between cyclonic WT and
the global bias correction can be observed, since several points
are better located along the 45° line of perfect forecasts.

It is important to notice that the correction can become weak
due to the low number of extreme events available during the
2006–2010 calibration period. Furthermore, when WTs are
identified as false negative (the type is not observed, but forecast)

or missed (observed WT that is not forecast), it cannot be
corrected with this method. Only false rainfall intensities can
be correct based on statistical laws, which are a “sub-group” of
missed and false negative forecasts.

In summary, the bias correction based on hybrid automatic
threshold classification allows refinement of the bias correction
function. Figure 13 illustrates the divergence of theWT correction
and lead time. Only a fewWTs are related to extreme events and,
therefore, the forecast puts more emphasis on WTs that under-
perform in their predictions, such as the purely westerly wind
pattern. The westerly pattern affecting a few urban areas such as
Hamamatsu, Hachioji, Yokohama and Nagoya does not present
sufficient predictability skills.

The 24 h lead-time forecast bias correction presented in
Figure 12 was expanded to 48, 120 and 240 h forecast lead
times, as illustrated in Figure 13. The cumulative rainfall
observed against the forecast rainfall was plotted. We can
see the performance of the correction in several of the plots
that show the raw (i.e. not corrected) TIGGE rainfall intensity
being corrected against observed AMEDAS rainfall.
Therefore, we computed the RMSE between observations
and forecasts. Both hybrid and cyclone bias correction pre-
sent an improvement in rainfall forecast. However, it seems
that low rainfall tends to be overestimated in the case of the
+240 h cyclonic WT, even when it has been relatively well
corrected (most of the corrected cyclone rainfall is located
above the 45°line for 240 h lead-time cyclonic WT forecast).

Figure 12. Corrected +24 h rainfall forecast for the three main extreme events: (a) global bias correction; (b) hybrid, (c) cyclone and (d) purely westerly and NW wind
WTs. The 45° line indicates a perfect match between observed AMEDAS rainfall and ECMWF control forecast data.
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The low performance of the bias-correction model is clear in
the case of +120 h purely westerly wind WT. The error is
mainly due to the small number of extreme events with low
forecast skill. A negative bias correction was obtained for
purely westerly wind WT and +240 h lead time. This reflects
the general overestimation of the purely westerly wind WT at
+240 h lead-time forecast. To quantify the results, a statistical
analysis based on 10 weather stations was performed, the
results are presented and discussed in the following section.

4.5 Statistical analysis

Figure 14 illustrates the statistical performance of the bias
correction based on WT for +24 h forecasts. The RMSE,
mean average error (MAE) and change in correlation factors
are estimated for three rainfall threshold values, 10, 50 and
100 mm/d, to account specifically for extreme rainfall. The
results exhibit a general improvement of all WTs at each
rainfall threshold, but within a broad range of performance.
Moreover, WTs performed better overall than global bias

Figure 13. Performance of the bias correction for the cumulative rainfall at +24 h, +48 h, +120 h and +240 h forecast versus observation. A filter is applied to
remove low rainfall events.
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correction (box plots are above the dashed white abscissa
line). The quality increases with the rainfall intensity thresh-
old; however, the variability of the results also increases with
the rainfall. Thus, cyclonic event and NW wind WTs present

an increase in performance of 0–30% and 5–25%, respec-
tively, at the 100 mm/d threshold.

It is clear that hybrid, cyclonic and pure NW wind WTs
show more improvement than the global bias correction.

Figure 14. Box-and-whisker plots showing statistical performance of the bias correction for +48 h, +120 h and +240 h rainfall for thresholds of 10, 50 and 100 mm/
d. Performance is evaluated in terms of RMSE reduction for each WT: hybrid, cyclone, NW and westerly wind. The horizontal black line in the box represents the
median of the distribution (50% of the data are greater than this value), the upper and lower box limits represent the upper and lower quartiles (25% of data greater
value). Maximum and minimum greatest and least values are indicated by the top and bottom horizontal lines. The outlier points indicate a value of more than two-
thirds of the upper quantile.
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However, the pure westerly wind WT shows worse perfor-
mance than the global bias correction for the thresholds of 50
and 100 mm/d. The performance of the rainfall correction
depends on the location of the station and it shows large
variations for the cyclonic and purely NW wind WTs when
rainfall is higher than 100 mm/d. The results are poor for this
WT and extreme rainfall, due to the low number of purely
westerly wind extreme events during the period 2006–2014.
The correlation factor decreases in quality after bias correc-
tion with a large variation in the performance function of the
WT and the rainfall threshold amount stations.

The skill scores of forecasts are useful tools to evaluate
performance. The extreme dependency score (EDS) is used to
evaluate the performance of forecast system models for rare
extreme events, as defined by (Coles et al. 1999):

EDS ¼ log aþc
n

� �
log a

n

� 1 (10)

where a is the hit rate, c the number of misses and n the
number of events.

The EDS has the advantage of low sensitivity to rainfall
threshold when contingency tables are computed (Primo and
Ghelli 2009). It can be used to evaluate the quality of post-
processing methods to improve rainfall forecast estimation.

Figure 15. Extreme dependency score for raw and global corrected (NoWT)
forecasts for Tokyo station with thresholds of 10 and 100 mm/d, respectively.
The global observed EDS (NoWT) are indicated by solid black and grey lines for
thresholds of 10 and 100 mm/d, respectively. The corrected forecast that does
not use the WT approach shown by the dotted line.

Figure 16. Extreme dependency plot per weather type for Tokyo station with a threshold of 10 mm/d. (a)–(d) Performance of individual hybrid, cyclone, NW and W wind
WTs, respectively. The corrected global EDS (NoWT) is indicated by the dashed black line. The solid grey, blue, violet and pink solid lines indicate the observed EDS scores for
the hybrid, cyclone, NE and W WTs. The coloured dotted lines highlight the performance of the specific WT bias correction for a rainfall threshold of 10 mm/d.
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Figure 15 illustrates the EDS versus forecast lead time for raw
(i.e. not corrected) and corrected forecasts in the case of the
WT approach and the no WT (NoWT) approach. The EDS
score confirms the better performance of bias correction per
WT than the global approach in addition to the gain in lead
time skill. For instance, the correction performed using the
WT approach improves the correction compared to a global
correction method.

Figures 16 and 17 illustrate the statistical performance of
the weather type based bias correction for +24, +48, +120 and
+240 h forecast with EDS performance for rainfall threshold
of 10 and 100 mm/d. As illustrated by Figure 16, the low
rainfall intensities (>10mm/d) show that the global correction
(without WT approach) always performed better than the
weather type approach. However as illustrated in Figure 17,
for heavy rainfall (p > 100mm/d), the weather type improve
the bias correction for the lead time +48, +120 and +240 h.
Strong improvement can be noticed for both Hybrid and
Cyclone, Figure 17(a) and Figure 17(b), respectively.
Moderate improvement of EDS for Westerly wind Figure 17
(d) and small improvement for North-Westerly wind, Figure
17(d). These results confirmed and refined the results
obtained in the beginning of the statistical analysis part.

5 Conclusions

In this study, we (1) determined the occurrence of weather types
(WT) and their predictability skill for up to 10 days ahead in
Japan, (2) assessed the rainfall characteristic of WTs and their
associated extreme rainfall, and (3) attempted to improve rainfall
forecast byWT clustering bias correction. The analysis presented
here links the WT forecast and the bias correction. It can be
applied to extreme rainfall events that occur in urban areas prone
to flooding. Our findings show that the highest predictability of
WTs ranges from anticyclone, hybrid, cyclone, SE, westerly,
easterly, SW, NE, NW, southerly to northerly wind. However,
only cyclonic, hybrid, NW and westerly windWTs are associated
with extreme events, and this is validated from 10 urban obser-
vation rainfall records. Additional WTs are identified that gen-
erate rainfall intensity between 100 and 150 mm/d, these being
easterly wind, northerly wind and anticyclonic. The results of this
study suggest that a WT-based correction is desirable.

A relatively simple and flexible cumulative probability
distribution bias correction was applied that gives robust
results within the methodology. By comparing the raw (i.e.
not corrected) forecasts from the ECMWF, we show that
cumulative 24, 48, 120 and 240 h lead-time forecasts show
the underestimation of all WTs while highlighting strong

Figure 17. Extreme dependency plot per weather type for Tokyo station with a threshold of 100 mm/d. (a)–(d) Performance of individual hybrid, cyclone, NW and W
wind WTs, respectively. The corrected global EDS (NoWT) is indicated by the dashed black line. The solid grey, blue, violet and pink solid lines indicated the observed
EDS scores for the hybrid, cyclone, NE and W WTs. The coloured dotted lines highlight the performance of the specific WT bias correction for a rainfall threshold of
100 mm/d.
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variations between them. We used 10 stations to investigate
the statistical performance of the methods and show that bias
correction reduces the root mean square error (RMSE) of the
rainfall by about 0–10%, depending on the station, WT and
forecast lead time. The WT classification bias-correction
approach presents higher RMSE reduction than a global
bias-correction method that does not use a WT approach in
the majority of cases (90%). For the best cases, an additional
20% improvement could be observed due to the use of spe-
cific bias correction-based WT.

The EDS investigation showed that global bias correction (or
NoWT) indicated good performance for rainfall events larger
than 10 mm/d, but weak performance for events larger than
100mm/d, except for 24 h lead time. The EDS score for events of
>100 mm/d presented higher performance for WT-based bias
correction for all lead times. The results obtained highlight the
importance of WT-based bias correction for extreme rare
events, and the limitations of a global bias-correction approach.

Finally, the analysis undertaken raises important questions
for future research. First, in addition to the forecast lead time
and weather type investigation, seasonality and the bias-correc-
tion method itself could be investigated. Second, similar meth-
ods should be extended to other urban areas and could help to
highlight local geographical constraints which can determine
the predominance of extreme rainfall associated WTs, as we
saw at the Niigata station. A location close to the coastline or
near mountains creates a local climate system, which differs
from the regional pattern, as illustrated by Nagoya or
Hamamatsu stations. Furthermore, the example of Niigata
station suggests fewer occurrences of extreme rainfall but
with a more diversified WT. Third, it would be interesting to
investigate to what extent the results presented here advance
the goal of improving dynamical downscaling using WT in a
selection process for an operational flood alert system.
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