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Abstract
The availability of several multi-model and ensemble sub-seasonal forecasts online has

generated a growing interest in extreme rainfall prediction and early warning. Developing

countries located in the tropics like Sri Lanka are good examples of complex meteoro-

logical zones where early warning system progress is crucial for flood damage mitigation.

This study investigates the potentials and advantage of the recently available Sub-seasonal

to Seasonal (s2s) database provided by a consortium of weather forecasting institutes using

self-organizing map classification. The results (1) highlight the relation between telecon-

nection indexes such as the Madden–Julian Oscillation and the spatiotemporal rainfall

pattern, (2) illustrate that heavy rainfall event frequencies depend on the type of the cluster,

(3) find that the performance of s2s forecasts varies among cluster and (4) provide cor-

rective bias coefficient to forecast water volume in the basin for each cluster. This study

highlights the interest of s2s forecast for extreme rainfall prediction and advocates for the

release of real-time s2s data that can provide useful information for early warning in

developing country such as Sri Lanka.

Keywords s2s � Self-organizing map (SOM) � Rainfall extremes � Bias correction � Early
warning � Sri Lanka

Abbreviations
CMA China Meteorological Agency

ECMWF European Center for Middle-Range Weather Forecast

ENSO El Nino Southern Oscillation

ERA-interim European Reanalysis Interim

& J. F. Vuillaume
vuillaume@student.unu.edu

1 United Nations University, Institute for the Advance of Sustainability, UNU-IAS, Tokyo, Japan

2 Global Hydrology and Water Resources Engineering, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505,
Japan

3 National Center for Hydrology and Meteorology, Thimphu, Bhutan

4 Remote Sensing and Geosciences Information System (GIS), Federal University of Technology,
Akure, Ondo-State, Nigeria

5 Ministry of Megapolis and Western Development, Government of Sri Lanka, Colombo, Sri Lanka

123

Natural Hazards
https://doi.org/10.1007/s11069-018-3394-9

http://orcid.org/0000-0002-8136-3481
http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-018-3394-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-018-3394-9&amp;domain=pdf
https://doi.org/10.1007/s11069-018-3394-9


MJO Madden–Julian Oscillation

NCEP National Center for Environmental Protection

RMM Real-time Multivariate MJO indices

S2S Sub-seasonal to Seasonal

SOM Self-organized map

1 Introduction

An efficient early warning system for heavy rainfall and improving flood prevention is the

main aim of several weather and water agencies around the globe. Generally, the prediction

quality decreases with the increase in lead time. However, an optimal early warning system

should take advantage of information available at a critical timescale that allows proactive

disaster mitigation intervention. A range of forecast lead-time data is already available from

day to week and season, but sub-seasonal scale is poorly covered. Several sub-seasonal

forecast systems from 1 to 4 weeks lead time were developed to cover a lead-time gap in

current forecast systems with the intention to provide useful informations to several key

sectors (Vitart et al. 2017). After implementation of sub-seasonal forecast systems by several

forecast agencies as an operational experiment tool, data are usually made available for further

research and improvement. However, the accuracy of this relatively ‘‘new’’ and ‘‘large’’ lead-

time forecast product needs to be evaluated in diverse areas and weather conditions such as

mid-latitude and the tropics. The skills of the s2s may potentially driven by lower assimilation

quality, the overweight on mid-latitude forecast data in the global models and the presence of

complex weather phenomena such as square line, heavy thunderstorm, and monsoon.

Lately, Vigaud et al. (2017) explored the s2s potential for the boreal summer season

over North American, West African and Asian for the 1999–2010 period with the CMA,

ECMWF and NCEP models. The authors computed the correlation between the MJO and

s2s weeks 3–4 rainfall. The result findings indicated that Asia region presents the highest

score with the ECMWF. Furthermore, Wang et al. (2017) examined the rainfall anomaly in

California during February 2016, as well as in January and February 2017 and obtained

results that ‘‘support the broader notion that what is unpredictable atmospheric noise at the

seasonal timescale can become predictable signal at the sub-seasonal timescale’’. Finally,

Olaniyan et al. (2018) considered the s2s ensemble mean rainfall forecast skills in a

traditional ‘‘poor performance’’ region such as West Africa. The authors concluded that the

s2s ‘‘has almost 75% synchronization with observation, implying that the model will thrice

make correct forecast out of four forecasts on Nigeria and furthermore, that ‘‘quantita-

tively, the model predicts rainfall accumulation best over the Sahel and least over the

Guinea areas’’.

There are potentially several applications that can benefit from s2s forecasts (White

et al. 2017), such as the humanitarian sector (Goddard et al. 2014), public health for heat

waves (Osman and Alvarez 2017), wind energy (Pinson 2013), water resources related to

monsoon forecast (Jie et al. 2017). The flood prevention area is probably the most

advanced application area. As an example, the Australian seasonal real-time operational is

used as a support for extreme rainfall and flood forecasts as illustrated by White et al.

(2015). Recently, Liu et al. (2017) assessed the performance of the sub-seasonal forecast

using mainly the Madden Julian Oscillation (MJO) as a reference. First, the correlation

analysis indicates that the forecast skill presents higher correlation with the Indian Ocean
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Dipole (IOD) teleconnection index than the El Niño-Southern Oscillation (ENSO). Fur-

thermore, MJO forecast skill is associated with the IOD, and the autumn period shows the

highest skill. The authors further recommended the need to improve the physics of the

region to solve the low predictability limit posed by the maritime continent.

Synoptic climatology is the study of the relationships between atmospheric circulations

with the regional climate. Synoptic climate can be studied with canonical correlation

analysis (CCA), principal component analysis (PCA), analogue methods like empirical

orthogonal functions (EOF) and newer methods like self-organizing maps (Yarnal et al.

2001). The self-organizing map (SOM) is a relatively new field of synoptic climatology

analysis with diverse applications (Sheridan and Lee 2011). The SOM (Kohonen 1982) is a

nonlinear unsupervised neural network method that can identify patterns in gridded data

and reorganize them in a map. SOM is effective at handling missing data, gives consistent

results and can describe linear or nonlinear data distribution functions (Hewitson and

Crane 2006). As examples, the applications of SOM in climate from multi-model studies

can be dedicated to seasonal predictions (Guitiérrez et al. 2005), extreme climate events

analysis (Cavazos 2000) or, Indian Summer Monsoon prediction (Borah et al. 2013).

SOMs are objective circulation characterization patterns computed from realistic physics

data using a wide range of method including the k-mean (Moron et al. 2016). It needs to

span a range of sufficient and manageable circulation feature to capture the variability of

circulations. Several authors have investigated the link between SOMs and extreme pre-

cipitation in regions like Japan (Ohba et al. 2015), Alaska (Glisan et al. 2016) or Australia

(Li et al. 2016) with a converging view. SOM permits the link between derived circulation

and spatial distribution of rainfall or temperature while providing useful analysis of the

change in the circulation patterns over the last decades with the association to extremes.

Ohba et al. (2015) investigated the use of SOM for extreme rainfall over Japan with the

Japanese 55-year Reanalysis Project (JRA-55). The SOMs were used to investigate the role

of circulation and atmospheric moisture on extreme events. Their results indicated that

ENSO affects the frequency of the clusters in relation to the heavy rainfall events. The

study also suggested that the inter-decadal variability of frequency for heavy rainfall events

corresponds to changes in frequency distributions of clusters and is not due to one par-

ticular cluster. Glisan et al. (2016) used the WRF model to investigate extreme daily

precipitation using SOM in a polar region, Alaska. They showed that the SOM aids in

determining high-frequency nodes, and hence, circulations are conducive to extremes.

Their conclusion suggests that multiple circulation patterns are responsible for extreme

days, but are differentiated by the location of the frequency of the extreme events in

Alaska. These gaps are due to a combination of global weather system of mid-latitude

driven by a large financial resource in the North and a lack of ground data in the South.

This gap has a direct practical consequences on the quality of the forecast available in the

region as well as the potential to correct bias error in the forecast based on accurate

observation. The use of cluster to optimize rainfall forecast was illustrated for Japan by

Vuillaume and Herath (2017) using forecast range from 1 to 10 days. The results suggested

that bias correction at a station scale was improved with a clustering method such as the

weather-type approach by a 10–20% rainfall RMSE reduction. Furthermore, a similar

approach was used to optimize dynamical weather forecast based on weather-type

approach with regional mean rainfall forecast improvement (Vuillaume and Herath, 2018).

The study indicated an improvement of 10–20% of RMSE per weather type.

This study focused on the skilful predictability of extreme rainfall event in Sri Lanka at

the sub-seasonal lead time (1–4 weeks). In addition, it used a self-organizing cluster

weather classification to investigate the performance of the prediction with different
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weather situations. The majority of the tropical rainfall variability of the region is asso-

ciated with the MJO phase anomaly which is complex to predict. The cluster method

permits the classification of weather with a similar pattern that has specific forecasts skills

and can allow the determination of more specific bias correction method than without

classification.

2 Study area

Sri Lanka is located south-east of India in the Indian Ocean as shown in Fig. 1. The Kelani

river basin is located south-west of Sri Lanka. Colombo is located in the downstream part

of the Kelani river basin. The topography plays a significant role in the rainfall concen-

tration time. The climate pattern of Sri Lanka is characterized by rainfall peaks around

May and September and results in thunderstorms associated with convective cells and the

location of the Inter-tropical Convergence Zone (ITCZ) over Sri Lanka (Zubair 2003).

Further, both the monsoon and tropical cyclones from the Bay of Bengal contribute to

heavy rainfall from October to November. On the west side, the hillslopes are the main

driver of orographic rainfall that occurs from June to September when the westerly winds

prevail (Zubair 2003). The short concentration time enables heavy rainfall to quickly create

flood events. The Kelani river basin discharges to the sea 144 km downstream towards

Colombo. The basin is subjected to heavy rains which results in the rapid rise of the Kelani

stream flow and poses frequent flood hazard disasters for Colombo (Zubair 2003).

This study focused on the skilful predictability of extreme rainfall event in Sri Lanka at

the sub-seasonal lead time (1–4 weeks). The majority of the tropical rainfall variability of

the region is associated with the MJO phase anomaly which is complex to predict. The

cluster method permits the classification of weather with a similar pattern that has specific

Fig. 1 Map of the Kelani river basin and the s2s/PERSIANN rainfall grid point over Sri Lanka. The stations
used in the Kelani basin are indicated by red circle (left). The s2s grid forecast and the PERSIANN
observation are marked by red and blue dots, respectively, over the map of Sri Lanka (middle). The Kelani
basin is deliminated by green line over Sri Lanka
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forecasts skills and can allow the determination of more specific bias correction method

than without classification.

3 Methodology

The general framework of the study is illustrated in Fig. 2. First, the European Reanalysis

(ERA-40 interim) was used to compute the k-mean cluster classification. Twenty rainfall

station observations (1981–2009) from the Kelani river basin were used to identify rainfall

events and the contribution of clusters in both water volume and extreme events. Both the

observation and forecast data were post-processed to compute anomaly. Then, the rainfall

anomalies of both observed PERSIANN and ECMWF s2s forecast for the weeks one, two

and three were computed. The study identifies poor forecast clusters that need further

attention and computed potential bias correction coefficients for watershed cumulative

volume.

3.1 Data

Several data sets from different sources were used as summarized in Table 1. The ERA40

interim is the main source of gridded data used to compute the SOM and organized

clusters. It consists of a large gridded data set with several fields optimized by data

assimilation and several observation sources (Uppala et al. 2005). For this study, only the

wind velocities U and V components at the level 200, 700 and 925 hPa pressure levels are

used. The Precipitation Estimation from Remotely Sensed Information using Artificial

Neural Networks—Climate Data Record (PERSIANN-CDR) provided by the Center for

Hydrometeorology and Remote Sensing (CHRS) from the University of California, Irvine

consist of daily rainfall data at 0.25� resolution from 1983 to present at the latitudes 60�S–
60�N. The data addressed the need for a consistent, long-term, high-resolution global

precipitation data set for the study, especially for extreme precipitation events. The

PERSIANN algorithm used GridSat-B1 infrared data and adjusted with the Global Pre-

cipitation Climatology Project (GPCP) (Ashouri et al. 2015). The data present a good

performance for the tropical regions in particular in reducing bias. They are used for

Fig. 2 Framework of the study
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quality check of the s2s anomaly forecast. Further, additional rainfall observations over Sri

Lanka at several rain gauge stations monitored by the Department of Meteorology Sri

Lanka were used.

The s2s project consists of a database containing sub-seasonal to seasonal forecasts

from 11 operational centres (Vitart et al. 2017). For convenience, the ECMWF data such as

the large ensemble size (51 members), forecast period (weekly) and re-forecast frequency

(two per week) and ensemble re-forecast size (11) are used. This study has to be considered

as a prospect for further investigation when more data will become available.

3.2 Precipitation extremes

The extreme events analysis is strongly limited to the s2s date available. A minimum

rainfall threshold of 40 mm/day is defined such that each cluster could at least have three

representative case studies. Table 2 summarizes the cases used, the associated clusters, the

date and the rainfall average among twenty locations in the basin (computed from

Table 1 Acronym, provider, resolution, period and duration of the data used in this study

Data set Provider Resolution (�) Availability Length (in years)

ERA4-interim ECMWF 0.75 1979/01/01–2017/03/31 38

PERSIANN-CDR CHRS California 0.25 1983/01/01–2016/08/31 35

S2S CMA/ECMWF/NCEP 2.5 2015/01/01–2017/07/06 2.5

Stations Sri Lanka government Point 1981/01/01–2009/12/31 29

Table 2 Summary of event used from the s2s database, with case number, cluster #, date and average rain
among station in the Kelani basin

Case # Cluster # Date Ave. rain (mm) Case # Cluster # Date Ave. rain (mm)

1 1 2015-10-23 46.4 16 4 2015-04-07 44.8

2 1 2015-10-24 90.9 17 4 2015-04-19 61.7

3 1 2015-12-07 46.7 18 4 2015-04-20 65.9

4 1 2016-05-14 40.1 19 4 2015-05-08 77.7

5 2 2015-04-24 41.8 20 4 2015-05-09 130.8

6 2 2015-04-29 40.6 21 4 2015-11-06 40.1

7 2 2015-12-02 40.2 22 4 2015-11-29 45.0

8 2 2016-05-13 41.0 23 4 2015-12-08 54.0

9 2 2016-05-15 47.4 24 4 2016-04-26 41.4

10 3 2015-10-16 44.6 25 4 2016-04-30 41.0

11 2 2015-10-18 41.3 26 4 2016-05-08 58.0

12 2 2015-10-19 48.4 27 4 2016-05-09 40.1

13 2 2015-10-25 40.3 28 4 2016-05-10 61.5

14 2 2016-03-28 40.6 29 5 2015-06-04 41.5

15 2 2016-04-19 72.7 30 5 2015-09-03 42.8

31 5 2016-05-27 45.3
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PERSIANN grid). A stricter selection of extreme rainfall will be less representative of

clusters and risk omitting extreme rainfall associated with some clusters. This will be

confirmed by the study of historical data of the Kelani river basin from 1981 to 2009.

3.3 Teleconnection

Teleconnections in climate science are used to refer to wind patterns that connect different

regions. Teleconnection refers to persistent, large-scale anomalies of pressure and weather

circulations. The climate system exhibits several teleconnections such as the ENSO. It is

also implied that some indexes can partly explain the variability of rainfall patterns.

Several studies show the link between teleconnections such as the ENSO phase and rainfall

pattern in Sri Lanka (Suppiah 1996; Zubair et al. 2008). However, the timescale of the

ENSO is not convenient to assess the skill score of the sub-seasonal forecast. The Madden–

Julian Oscillation (MJO) is used because it was identified as the principal mode of large-

scale sub-seasonal variability in the tropical area (Madden and Julian 1971, 1994). The

MJO is an equatorial eastward moving intra-seasonal disturbance of clouds, rainfall, winds,

and pressure with a frequency of 30–60 days. It is associated with phases which are either

enhancing or suppressing convective rainfall. The location of the group of clouds is the

base of the phase classification of the MJO. The MJO can modulate the strength of the

monsoons. The MJO is traditionally divided into eight phases which are expressed as a

dipole-like pattern composites of summer monsoon rainfall anomalies observed in the

Indian surrounding region, between Indian region and the Equatorial Indian Ocean (EIO).

This dipole-like pattern consists of positive anomalies during the active convection (Real-

time Multivariate Madden–Julian Oscillation RMM phases 3, 4, 5 and 6) and negative

rainfall anomaly during suppressed convection phases (7, 8, 1 and 2) of the MJO (Mishra

et al. 2017).

Teleconnections can be used for different purposes such as the verification of model

quality in predicting large-scale changes. Therefore, MJO index can be used with rainfall

pattern to confirm the presence of a pressure oscillation that has strong impacts on rainfall

pattern. This pattern has one of the primary influences in the Indian Ocean. It needs to be

predicted by sub-seasonal forecast system because s2s systems are developed and evalu-

ated on their quality to forecast the MJO. Further, many recent studies investigated the link

between MJO and rainfall pattern in several locations such as West Africa (Niang et al.

2017), South America (Giovannettone 2017; Shimizu et al. 2017) and the maritime con-

tinent in Indonesia (Mishra et al. 2017). In this study, we used available MJO data provided

by the Bureau of Meteorology (Australia) and rainfall grid. The correlations index was

computed online with the International Research Institute Columbia (IRI) tools.

3.4 Self-organizing map (SOM) for weather type

Self-organizing maps from the years 1990 to 2000 were used as a tool to assess climate and

weather situation using systematic classification (k-mean method). The k-mean method is

one of the methods available for SOM generation; it is an optimal method for low-

dimensional unsupervised learning such as weather cluster. K-mean method uses the

nearest mean velocity to create different clusters and classifies weather data. This study

used the k-mean 2D classification over 6 parameters of the 3 levels of wind direction over u

and v direction. Due to non-availability of recent data of the outgoing longwave radiation
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(OLR), it was not used but could constitute an additional allowable variable to improve the

classification.

3.5 s2s and post-processing

The treatment of s2s data in itself is a method because the multiple dimensions of the data

make them complex to manipulate and extract optimal information. The study uses the

method developed during the s2s workshop 2015 at the International Center for Theoretical

Physics (Trieste, Italy). The method was modified to estimate the cumulative water volume

anomaly at the basin scale for both observed (PERSIANN data) and forecast data. The

method is summarized in the following steps:

1. Select extreme rainfall using rainfall threshold at the station location

2. Retrieve Observed PERSIANN gridded rainfall data for 20 years and retrieve real-

time ensemble forecast and re-forecast (1986–2016) for the same date

3. Estimate the rainfall accumulation by computing the difference between time steps

4. Compute the mean of the ensemble over the region

5. Compare the ensemble mean with re-forecast mean for similar day of the year (number

of years depend on of the provider method and the latest re-forecast data set

availability, regular updates or ‘‘on the fly’’)

6. Compute the anomaly of the observations

7. Plot the anomaly and retrieve values.

The anomaly are computed against similar date but at different year times for

15–20 years depending on the model used. It allowed the estimation of anomaly for

specific events at different forecast ranges typically 7–11 days, 12–18 days and

19–25 days.

4 Results

The description of the results starts with the teleconnection pattern between the MJO and

the two rainy periods of Sri Lanka. Then, the results obtained by self-organizing map

determination using the k-mean methods for 1979–2016 over Sri Lanka are summarized.

Finally, the skills of the s2s forecast are assessed for the 31 largest rainfall events between

January 2015 and December 2016.

4.1 MJO and rainfall correlation

The correlation map between the MJO phases and the rainfall anomaly pattern is computed

with the online processing tools provided by the International Research Institute Columbia

(IRI). Figures 3 and 4 illustrate the correlation between the anomaly rainfall and the MJO

index, classified in phases for two periods (May–September and December–February).

Both seasons highlight similar temporal variabilities of the seasonal rainfall distribution

but with different spatial distributions for phases 1 and 8.

Overall, the phases 2–4 are characterized by positive rainfall anomaly, while the phases

5–7 by negative rainfall anomaly. The two periods correspond to the two monsoons periods

observed in the region. For the monsoon period of May–September, the south-west area of

Sri Lanka presents a strong positive rainfall anomaly for phases 2–4 and a negative

anomaly for the phases 5–8. During the period of December–February, the north-east
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monsoon occurs and affects the whole country. The divergence of intensity or anomaly can

also be observed between the west and east sides of the island. The phases 3, 4, 6, 7 and 8

exhibit large effects on the south-west coast of Sri Lanka while other part being relatively

unaffected. Moreover, the phases 1, 5 and 8 of the December–February monsoon exhibit

Fig. 3 Rainfall anomaly distribution (1981–2016 CHIRPS data; Funk et al. 2015) classified by Madden–
Julian Oscillation phase index for the period of May–June–July–August–September over Sri Lanka. The red
colour indicates a strong positive anomaly and the green a negative anomaly between the rainfall location
and each the MJO phases

Fig. 4 Rainfall anomaly distribution (1981–2016 CHIRPS data; Funk et al. 2015) classified by Madden–
Julian Oscillation phase index for the period of December–January–February over Sri Lanka. The red colour
indicates a strong positive anomaly and the green a negative anomaly between the rainfall location and each
the MJO phases
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opposite behaviour between east–west or NW and SE which is strengthened by the

orography of the island.

The results indicate that: (1) CHIRPS rainfall data observation adequately represents the

monsoon pattern; (2) the distribution in time and space of the rainfall anomaly and

therefore rainfall is strongly controlled by the MJO index. Therefore, it can be concluded

that a sub-seasonal forecast time calibrated on MJO index quality should potentially

improve the rainfall patterns in space and time in the tropical region.

4.2 Self-Organized Map for Sri Lanka

The SOM computed with the k-mean cluster approach at 925 hPa is plotted in Fig. 5 and

for 200 hPa in Fig. 6. It illustrates the daily variability captured by the SOM. This method

used six parameters (U and V at 200, 700 and 925 hPa, respectively) and classified weather

events in a more refined feature than weather-type classification based on sea surface

pressure. It suggests a link between clusters and the monsoon or the pre-monsoon period

(wind shifted northward similarly to the ITCZ). Clusters can be associated with their wind

direction and intensity pattern at 200 and 925 hPa. The solution using five SOMs was used

because it gathers most of the variability observed in the region. The clusters can be

divided into dominant wind direction, such as west, north-west, monsoon type and east.

From the clusters classification, the characteristics of rainfall associated with clusters can

be analysed such as cluster frequency, water volume, rainfall characteristics, extreme

events frequency and extreme spatial distribution.

Figure 7 shows the seasonal variability of clusters frequency and the monthly average

rainfall volume. A seasonal cluster variation can be observed both in terms of frequency of

Fig. 5 Self-Organized map (SOM) wind pattern plotted at the 925hPa height for the five cluster solution.
The blue blue arrow indicates the main wind direction at 925hPa
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clusters and in rainfall volume. Overall, the clusters #2 and #5 occurred during the NE

monsoon with a large extension over the whole country but limited rainfall amount (an

average of 100, 70 and 60 mm for the month of December, January and February,

respectively). Similarly, the clusters #3 and #4 characterized the May–September/October

period characterized by the SW monsoon which strongly affects Dompe location. Fur-

thermore, rainfall can be analysed in terms of scale–shape parameters that characterized in

terms of extreme/low rain dominance. Figure 8 summarizes the plot of the Kelani river

Fig. 6 Self-organized map (SOM) wind pattern plotted at the 925 hPa height for the five cluster solution.
The blue arrow indicates the main wind direction 200 hPa

Fig. 7 Left: Seasonal cluster occurrence at Dompe in Sri Lanka. Right: Seasonal cumulative rainfall per
cluster type in Sri Lanka from 1981 to 2009
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basin stations rainfall in scale and shape classified by clusters (Husak et al. 2007). The

figure illustrates the signature of clusters in terms of low/extreme rainfall. Moreover, the

cluster #5 is identified as a low rain-few extreme cluster, while the cluster #3 low rain-

more extreme. The cluster #1 is representative of low rain system, while clusters #2 and #3

a more complex association that tends to more extreme frequency. The analysis of extreme

rainfall frequency in the Kelani river basin is illustrated in Fig. 9 with the threshold of 100,

200 and 300 mm cumulative over 1 day. The figure completes the previous Fig. 5 with a

frequency analysis of the extreme vents. It confirmed that the clusters #2, #3 and #4

Fig. 8 Classification of rainfall per cluster using the 20 stations available over the period 1981–2009. Left:
Shape versus scale plot of rainfall events. Right: Interpretation of the rainfall in terms of rainfall signature
from more extreme to fewer extreme and low rainfall

Fig. 9 Occurrence of extreme events per cluster at the meteorological stations located in the Kelani basin
(see Fig. 1 for the exact location of the stations): Top [ 100 mm/d, Middle [ 200 mm/d, Bottom
[ 100 mm/d. Station names are as follows: Dom. Dompe, Mee./Han. Meepe/Hanwella, Els. Elston, Che.
Chesterford, Avi. Avissawella, Deh. Dehiowita, Der. Deraniyagala, Mal. Maliboda, Deh. Dehiowita, Kit.
Kitulgala, Wat. Watawala, Nor. Norton, Can. Canyon, Mau. Maussakelle, Bog. Bogawantalawa, Cas.
Castlereigh, Mee. Meegoda, Ded. Dedigama, Lab. Labugama
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presented several extremes with intensity larger than 100–150 mm. In addition, rare event

of rainfall higher than 300 mm can be associated with clusters #1, #2, #3 and #4 with the

highest frequency for cluster #2.

Finally, the spatial distribution of extreme rainfall higher than 200 mm is illustrated in

Fig. 10 over the Kelani river basin with the basin elevation. First, the map shows the

increase in occurrence in the eastward direction of the basin similarly to the increase in

altitude. Secondly, the variability in the frequency of each cluster in the basin indicated

that westward locations are affected by extreme associated with clusters #2, #1 and #4 and

that a large majority of extreme are associated with clusters #3, #4 and #1 in the east part of

the basin. As a result, the figure seems to indicate that large variation of extreme cluster

occurs at the scale of a basin reflecting the complexity of extreme weather system in Sri

Lanka but that can be captured by the SOM approach both temporally and spatially.

4.3 s2s skills in Sri Lanka

The computation of the s2s quality for 31 high rainfall events in the Kelani river basin was

computed. The events were selected when one of the stations in the Kelani river basin

reached a daily cumulative rainfall higher than 40 mm/day. Events were classified per

weather types. The weekly s2s ECMWF forecast for weeks one, two and three lead time

was extracted as shown as the example in Fig. 11.

Figure 12 presents the results of (a) the %hit ratio of each cluster for the weeks 1–3 and

(b) the water volume corrective factor. The results indicate that clusters #2, #4 and #5

performed well in forecasting anomalies correctly for each of the lead times. However, the

clusters #1 and #3 performed poorly for most of the events at all the week’s lead time,

except for the 1st and 2nd week of 7 December 2015, the 1st week of 14 May 2016, 16

October 2015 and 28 March 2016, respectively. These results strongly suggest that the s2s

ECMWF forecast performance varies according to the cluster (Fig. 12a). Moreover, it

illustrates the variability of cluster performance compared to the ‘‘all-cluster’’ agglomer-

ated plot.

Generally, s2s forecast data underestimated rainfall observation similarly to most of the

forecasts due to the coarse grid resolution (Fig. 12b, ratios are higher than 1). It is a

Fig. 10 Spatial distribution of extreme rainfall during 1981–2009 associated with their cluster type
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characteristic of the low ability of the seasonal forecast to model convective rainfall and

coarse orographic resolution even when a sub-grid parameterization is used. Moreover, the

clusters ratio of PERSIANN rainfall observation versus s2s forecast does not systemati-

cally follow a linear regression curve such as suggested by the ‘‘all-cluster’’ plot. Then, the

cluster #2 indicates a decrease in bias correction at longer lead times, while clusters #1 and

#4 an increase. The cluster #3 presented no skills at weeks 2 and 3, while cluster #5 a

decrease from these bias error coefficients are presented as an illustration of the current

situation and will strongly depend on the increase in s2s data records. Nevertheless,

Fig. 11 Illustration of rainfall anomaly observation and s2s rainfall forecast anomaly (in mm) a PERSIANN
rainfall anomaly spatial distribution of the 23-10-2015 with 0.25� resolution. b–d ECMWF rainfall
ensemble mean anomaly for the week one (b), two (c) and three (d)

Fig. 12 Left: Summary plot of the forecast hit rate for rainfall event higher than 50 mm/day in % for each
weekly lead time. Right: Summary plot of the potential water volume corrective factor or bias correction
that need to be applied at each weekly lead time per clusters
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statistical corrective bias coefficient is crucial for the design of an adequate early warning

system since statistical downscaling is required. For clusters that systematically forecast

negative anomaly instead of positive one, the corrections were not possible, and therefore,

careful survey should be conducted upon detection of those clusters.

5 Discussion

Several limitations can be drawn from this study regarding the s2s forecast data avail-

ability. It impacts the estimation of the skills score per weather type and the total watershed

volume bias corrective coefficient. Thus, formulating the rainfall threshold of 40 mm/day

to define extremes is a concern. Furthermore, the interpretation of the clusters is complex

because several clusters coexist at certain seasons and only their frequency permits a

partial analysis. There is also a need to consider that trend of change that occurs in the

region during the analysis period of cluster classification (1981–2009) and the s2s forecast

(2015–2016).

5.1 Data limitation and clustering method

The results obtained for the s2s forecast are only limited to 2 years due to the recent release

of s2s data. Therefore, this study presents a first step of the potential of s2s for heavy

rainfall alerts. It effectively identifies the main opportunities for improvement by inves-

tigating on the clusters #1 and #3 in the tropical region. Further, s2s sub-seasonal forecast

providers other than the ECMWF could be investigated. However, the ECMWF was

frequently run (1 per week) and the large size of the ensemble available (51 members) can

model the uncertainty. The number of clusters was kept low to limit the number of cases to

analysis and isolate the cluster with poor prediction skill. While both monsoons were

studied, circulation patterns like the tropical cyclone were not identified and merged with

clusters that capture the general circulation pattern associated with cyclonic events such as

westerly wind.

The OLR data are reported as an important parameter for k-mean circulation cluster

classification (Moron et al. 2016). However, recent data and real-time forecast were not

available for the same period as U and V parameters. For a real-time operational per-

spective, the sub-seasonal OLR forecast is not provided. The forecast of clusters will be

limited and the choice of the correction coefficient for extreme bias correction uncertain.

Therefore, OLR data were avoided for this study.

5.2 SOM decadal variability

This study based its results on the period 1981–2009. However, variation in clusters

distribution may occur during this period. A change in clusters frequency will add further

constraints for s2s forecast system efficiency and self-organizing map used. Sheikh et al.

(2015) indicated that extreme rainfall intensity decadal change can be observed in Sri

Lanka. Furthermore, the consecutive dry day’s index has generally decreased across the

region except in Sri Lanka. Therefore, both extreme rainfall and drought index indicated

trends that will most likely be reflected in cluster distribution trend because of the cor-

relation between cluster and rainfall signatures (Fig. 8).

Figure 13 illustrates the decadal variability of the occurrence of the cluster associated

with the extremes. The decadal variability of the clusters is computed at the Dompe station

123

Natural Hazards



located in the west of the Kelani basin (see Fig. 1). It illustrated the increase in clusters #2,

#3 and #5, the stability of cluster #4 and the decrease in cluster #1. Therefore, it also

illustrated a decadal trend change in the Kelani river basin associated with an increase in

pro-extreme rainfall clusters and the decrease in low rain ones. Furthermore, the seasonal

change of clusters was investigated. Figure 14 illustrates the seasonal change over the last

three decades. An increase in clusters #3 associated with extreme rainfall can be noticed in

the month of May and October during pre- and post-monsoon period. Furthermore, an

increase in cluster #1 was associated with fewer extreme rainfall from October–February

during the DJF monsoon. Therefore, the seasonal change suggests an increase in extreme

during pre–post-monsoon period and an increase in low rain/few extreme during DJF

monsoon.

5.3 Data limitation and clustering method

The results obtained for the s2s forecast are limited to 2 years due to the recent release of

s2s data. Therefore, this study presents a first step of the potential of s2s for heavy rainfall

alerts. It effectively identifies the main opportunities for improvement by investigating on

the clusters #1 and #3 in the tropical region. The further s2s sub-seasonal forecast could be

investigated such as BoM, CMA, HMCR, ISAC-CNR, JMA, Méteo France, NCEP,

UKMO, ECCC and KMA. However, the ECMWF presents a high frequently run (1 per

week) and a large ensemble member size (51 members). The number of clusters was kept

low to limit the number of cases to analyse and isolate the cluster with poor prediction

Fig. 13 Scatter plot and trend of
decadal change of weather-type
frequency in the region of
Colombo from 1981 to 2009.
Each symbol and colour indicates
a cluster category

Fig. 14 Seasonal frequency of clusters (in number of cluster per year) for the periods 1981–1989,
1990–1999 and 2000–2009, respectively

123

Natural Hazards



skill. While both monsoons were studied, circulation patterns like the tropical cyclone were

not identified and merged with clusters that captured the general circulation pattern

associated with cyclonic events such as westerly wind.

The k-mean study uses six parameters, but others may have been used such as the

outgoing long radiation (OLR). The OLR data are reported as an important parameter for

the k-mean circulation cluster classification (Moron et al. 2016). However, recent data and

real-time forecast were not available for the same period as U and V parameters. Moreover,

regarding operational perspectives, the sub-seasonal OLR forecast is not provided making

it use not possible for cluster forecast. Therefore, OLR data were avoided for this study.

6 Conclusions

The study illustrates the potential of the s2s forecast for real-time heavy rainfall early

warning system in the Kelani basin in Sri Lanka. The study takes advantage of the self-

organized map for climate and adapts it for sub-seasonal weather prediction. It evaluated

the frequency of extreme rainfall events associated with specific weather circulation. The

weather circulations were estimated using k-mean cluster method with six climate

parameters: U and V at 200, 700 and 925 hPa. Then, the quality of the recently released s2s

database was evaluated for their potential to predict heavy rainfall event. Then, it was also

used to estimate an anomaly bias correction coefficient per cluster.

The results obtained are summarized in Table 3. It shows that (1) the frequency of

heavy rainfall is higher for clusters #1, #3 and #4 than #2 and #5 (Fig. 9). (2) The extreme

rainfall–cluster associations are spatially localized (clusters #3 and #4 in the east with

higher elevation, cluster #2 at low altitude and therefore in the west). The cluster #1 is

distributed over the whole basin with peak activity in pre- and post-monsoon period. (3)

Performance of the extreme rainfall differs largely among clusters. (4) Different bias

correction factors are necessary for each cluster.

The performance of the seasonal forecast is strongly dependent on the type of cluster or

weather condition. The extreme associated with the clusters #3 and #1 present low per-

formance, while the clusters #2, #4 and #5 exhibited a good prediction. The s2s data

present already some early alert skill that could be used for early warning flood/heavy

rainfall/landslide alerts if the correction factor is applied. Furthermore, full awareness

should be raised about clusters that are poorly forecast (clusters #1 and #3) while pre-

senting high inundation risk. In addition, the frequency cluster occurred during the last

Table 3 Summary of the results of the s2s forecast performance study

Cluster # General
circulation

Surf. wind
direct.

Period Fct.
Perf.

W1-3 Corr.
coeff.

#1 SE monsoon South-easterly February–May and
September–November

Poor 0.9–ND*–ND*

#2 Pre-/post-monsoon Weak October–February and
September–November

Very good 2.5–1.6–1.2

#3 Monsoon Easterly May–October Very poor 1.1–ND*–ND*

#4 Monsoon Easterly May–October Good 1.2–1.5–1.6

#5 Winter period North-easterly November–January Good 3.2–2–3

ND indicates that the anomaly was not detected by the sub-seasonal forecast. ND* not determined
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three decades with seasonal change in the pre- and post-monsoon extreme cluster fre-

quencies. These changes will most likely affect the future performance of the s2s sub-

seasonal forecast. Finally, this study advocates for the full real-time release of s2s data to

support meteorological agencies of developing countries with resource constraints.
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